cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A093556 Triangle of numerators of coefficients of Faulhaber polynomials in Knuth's version.

Original entry on oeis.org

1, 1, 0, 1, -1, 0, 1, -4, 2, 0, 1, -5, 3, -3, 0, 1, -4, 17, -10, 5, 0, 1, -35, 287, -118, 691, -691, 0, 1, -8, 112, -352, 718, -280, 140, 0, 1, -21, 66, -293, 4557, -3711, 10851, -10851, 0, 1, -40, 217, -4516, 2829, -26332, 750167, -438670, 219335, 0, 1, -33, 506, -2585, 7579, -198793, 1540967, -627073, 1222277, -1222277, 0
Offset: 1

Views

Author

Wolfdieter Lang, Apr 02 2004

Keywords

Comments

The companion triangle with the denominators is A093557.
In the 1986 Edwards reference, eq. 7, p. 453, the lower triangular matrix F^{-1} is obtained from F^{-1}(m,l) = A(m,m-l)/m with m >= 2, l >= 2. See the W. Lang link for this triangle.
Sum_{j=1..n} j^(2*m-1) = Sum_{k=0..m-1} A(m,k)*u^(m-k)/(2*m), with u:=n*(n+1), A(m,k):= A093556(m,k)/ A093557(m,k) and m=1,2,... (Faulhaber's m-th row polynomial in falling powers of u:=n*(n+1), divided by 2*m, gives the sum of the (2*m-1)-th power of the first n integers > 0. See the W. Lang link for the Faulhaber triangle.)
Sum_{j=1..n} j^(2*(m-1)) = (2*n+1)*Sum_{j=0..m-1} (m-j)*A(m,j)*(n*(n+1))^(m-1-j)/(2*m*(2*m-1)), with u:=n*(n+1) and m >= 2. Sum of the even powers of the first n integers > 0. From the bottom of p. 288 of the 1993 Knuth reference with A^{(m)}_k = A(m,k). See also A093558 with A093559.

Examples

			Triangle begins:
  [1];
  [1,0];
  [1,-1,0];
  [1,-4,2,0];
...
Numerators of Knuth's Faulhaber triangle A(m,k):
  [1],
  [1, 0],
  [1, -1/2, 0],
  [1, -4/3, 2/3, 0],
  ...
A(m,m-1)=1 if m=1, else 0.
Edwards' Faulhaber triangle F^{-1}(m,l) = A(m,m-l)/m, for m>=2, l>=2:
  [1/2],
  [-1/6, 1/3],
  [1/6, -1/3, 1/4],
  [-3/10, 3/5, -1/2, 1/5],
  ...
		

References

  • Ivo Schneider, Johannes Faulhaber 1580-1635, Birkhäuser Verlag, Basel, Boston, Berlin, 1993, ch. 7, pp. 131-159.

Crossrefs

Cf. A093557 (denominators).
Cf. A065551 and A065553 for Ira M. Gessel's and X. G. Viennot's version of Faulhaber triangle which is Edwards' Faulhaber triangle augmented with a first row and first column.

Programs

  • Mathematica
    a[m_, k_] := (-1)^(m-k)*Sum[ Binomial[2*m, m-k-j]*Binomial[m-k+j, j]*((m-k-j)/(m-k+j))*BernoulliB[m+k+j], {j, 0, m-k}]; Flatten[ Table[ Numerator[a[m, k]], {m, 1, 11}, {k, 0, m-1}]] (* Jean-François Alcover, Oct 25 2011 *)
  • PARI
    T(n,k) = numerator((-1)^(n-k)*sum(j=0, n-k, binomial(2*n, n-k-j)*binomial(n-k+j,j)*(n-k-j)/(n-k+j) * bernfrac(n+k+j))); \\ Michel Marcus, Aug 03 2025

Formula

a(m, k) = numerator(A(m, k)) with recursion: A(m, 0)=1, A(m, k) = -(Sum_{j=0..k-1} binomial(m-j, 2*k+1-2*j)*A(m, j))/(m-k) if 0 <= k <= m-1, otherwise 0. From the Knuth 1993 reference, p. 288, eq.(*) with A^{(m)}_k = A(m, k).
A(m, k) = ((-1)^(m-k))*Sum_{j=0..m-k} binomial(2*m, m-k-j)*binomial(m-k+j, j)*((m-k-j)/(m-k+j))*Bernoulli(m+k+j). From the Knuth 1993 reference, p. 289, last eq. with A^{(m)}_k = A(m, k). Attributed to I. M. Gessel and X. G. Viennot (see A065551 for the 1989 reference). For Bernoulli numbers see A027641 with A027642.

Extensions

More terms from Michel Marcus, Aug 03 2025

A093559 Triangle of denominators of coefficients of Faulhaber polynomials used for sums of even powers.

Original entry on oeis.org

6, 10, 30, 14, 14, 42, 18, 9, 10, 30, 22, 33, 66, 22, 66, 26, 26, 78, 273, 910, 2730, 30, 30, 15, 9, 90, 2, 6, 34, 51, 51, 51, 102, 51, 170, 510, 38, 19, 95, 95, 190, 57, 3990, 266, 798, 42, 14, 7, 21, 6, 66, 1386, 693, 110, 330, 46, 138, 46, 23, 230, 690, 345, 23, 230, 46
Offset: 2

Views

Author

Wolfdieter Lang, Apr 02 2004

Keywords

Comments

The companion triangle with the numerators is A093558. See comment there.

Examples

			Triangle begins:
  [6];
  [10,30];
  [14,14,42];
  [18,9,10,30]; ...
Denominators of:
  [1/6];
  [1/10,-1/30];
  [1/14,-1/14,1/42];
  [1/18,-1/9,1/10,-1/30];
  ... (see W. Lang link in A093558.)
		

References

  • Ivo Schneider, Johannes Faulhaber 1580-1635, Birkhäuser Verlag, Basel, Boston, Berlin, 1993, ch. 7, pp. 131-159.

Programs

  • Mathematica
    a[m_, k_] := (-1)^(m-k)*Sum[Binomial[2*m, m-k-j]*Binomial[m-k+j, j]*((m-k-j)/(m-k+j))*BernoulliB[m+k+j], {j, 0, m-k}]; t[m_, k_] := (m-k)*a[m, k]/(2*m*(2*m-1)); Table[t[m, k] // Denominator, {m, 2, 12}, {k, 0, m-2}] // Flatten (* Jean-François Alcover, Mar 03 2014 *)

Formula

a(n, m) = denominator(Fe(m, k), with Fe(m, k):=(m-k)*A(m, k)/(2*m*(2*m-1)) with Faulhaber numbers A(m, k):=A093556(m, k)/A093557(m, k) in Knuth's version. From the bottom of p. 288 of the 1993 Knuth reference.

A201453 Triangle of numerators of dual coefficients of Faulhaber.

Original entry on oeis.org

1, 1, -1, 1, -1, 2, 1, -2, 1, -8, 1, -10, 11, -4, 8, 1, -5, 29, -5, 8, -32, 1, -7, 7, -33, 26, -8, 6112, 1, -28, 602, -100, 313, -112, 512, -3712, 1, -4, 70, -1268, 593, -1816, 1936, -2944, 362624, 1, -15, 38, -566, 9681, -1481, 31568, -960, 2432, -71706112, 1, -55, 176, -1606, 5401, -54499, 290362, -58864, 44736, -285568, 3341113856
Offset: 0

Views

Author

Damir Yeliussizov, Jan 09 2013

Keywords

Comments

Sum_{k=0..N-1} (k*(k + 1))^m = Sum_{i=0..m} F(m,i)*N^(2*m-2*i+1), m=0,1,2,...
The coefficients F(m,i) are dual to Faulhaber coefficients, because they are obtained from the inverse expression Sum((k*(k + 1))^(m), k=0..N-1) to Faulhaber's formula from Sum((k)^(2*m-1), k=0..N-1) and there holds the identity F(m+i-1,i)=(-1)^i Fe(-m,i), where Fe(-m,i)=A093558(-m,i)/A093559(-m,i) is a Faulhaber coefficient for the sums of even powers of the first N-1 integers (for details see the reference 1, from p. 19).

Examples

			Triangle begins:
  1;
  1, -1;
  1, -1,  2;
  1, -2,  1,   -8;
  1, -10, 11,  -4,    8;
  1, -5,  29,  -5,    8,    -32;
  1, -7,  7,   -33,   26,   -8,    6112;
  1, -28, 602, -100,  313,  -112,  512,   -3712;
  1, -4,  70,  -1268, 593,  -1816, 1936,  -2944, 362624;
  1, -15, 38,  -566,  9681, -1481, 31568, -960,  2432,   -71706112;
  ...
		

Crossrefs

Cf. A093558, A093559, A201454 (denominators).

Programs

  • Magma
    [Numerator((1/(2*m-2*k+1))*&+[Binomial(m,2*k-i)*Binomial(2*m-2*k+i, i)*BernoulliNumber(i): i in [0..2*k]]): k in [0..m], m in [0..10]]; // Bruno Berselli, Jan 21 2013
  • Mathematica
    f[m_, k_] := (1/(2*m - 2*k + 1))* Sum[Binomial[m, 2*k - i]*Binomial[2*m - 2*k + i, i]*BernoulliB[i], {i, 0, 2 k}];
    a[m_, k_] := f[m, k] // Numerator;
    Table[a[m, k], {m, 0, 10}, {k, 0, m}] // Flatten

Formula

a(m,k) = numerator(F(m,k)) with:
1) recursion, F(x,0) = 1/(2*x+1) and 2*(m-k)*(2*m-2*k+1)*F(m,k)=2*m*(2*m-1)*F(m-1,k)+m*(m-1)*F(m-2,k-1);
2) explicit formula F(m,k) = (1/(2*m-2*k+1))sum(binomial(m,2*k-i)*binomial(2*m-2*k+i,i) Bernoulli(i), i=0..2*k)

A201454 Triangle of denominators of dual coefficients of Faulhaber.

Original entry on oeis.org

1, 3, 3, 5, 3, 15, 7, 5, 3, 105, 9, 21, 15, 9, 105, 11, 9, 21, 3, 9, 231, 13, 11, 3, 7, 5, 3, 15015, 15, 39, 165, 9, 15, 5, 45, 2145, 17, 5, 13, 55, 9, 15, 15, 45, 36465, 19, 17, 5, 13, 55, 3, 35, 1, 5, 969969, 21, 57, 17, 21, 13, 33, 63, 7, 5, 63, 4849845
Offset: 0

Views

Author

Damir Yeliussizov, Jan 09 2013

Keywords

Comments

Sum((k*(k + 1))^(m), k=0..N-1)=Sum(F(m,i)*N^(2*m-2*i+1),i=0..m), m=0,1,2,...
The coefficients F(m,i) are dual to Faulhaber coefficients, because they are obtained from the inverse expression Sum((k*(k + 1))^(m), k=0..N-1) to Faulhaber's formula from Sum((k)^(2*m-1), k=0..N-1) and there holds the identity F(m+i-1,i)=(-1)^i Fe(-m,i), where Fe(-m,i)=A093558(-m,i)/A093559(-m,i) is a Faulhaber coefficient for the sums of even powers of the first N-1 integers (for details see the link, from p. 19).

Examples

			Triangle begins:
1;
3,  3;
5,  3,  15;
7,  5,  3,   10;
9,  21, 15,  9,  105;
11, 9,  21,  3,  9,   231;
13, 11, 3,   7,  5,   3,   15015;
15, 39, 165, 9,  15,  5,   45,    2145;
17, 5,  13,  55, 9,   15,  15,    45,   36465;
19, 17, 5,   13, 55,  3,   35,    1,    5,    969969;
21, 57, 17,  21, 13,  33,  63,    7,    5,    63,    4849845;
etc.
		

Crossrefs

Cf. A201453.

Programs

  • Magma
    [Denominator((1/(2*m-2*k+1))*&+[Binomial(m,2*k-i)*Binomial(2*m-2*k+i, i)*BernoulliNumber(i): i in [0..2*k]]): k in [0..m], m in [0..10]]; // Bruno Berselli, Jan 21 2013
  • Mathematica
    f[m_, k_] := (1/(2*m - 2*k + 1))* Sum[Binomial[m, 2*k - i]*Binomial[2*m - 2*k + i, i]*BernoulliB[i], {i, 0, 2 k}];
    a[m_, k_] := f[m, k] // Denominator;
    Table[a[m, k], {m, 0, 10}, {k, 0, m}] // Flatten (* Jean-François Alcover, Jan 18 2013 *)

Formula

a(m,k) = denominator(F(m,k)) with F(m,k) = (1/(2*m-2*k+1)) * sum(i=0..2*k, binomial(m,2*k-i) * binomial(2*m-2*k+i,i) * Bernoulli(i) ).
A recursion is given by F(x,0) = 1/(2*x+1) and 2*(m-k)*(2*m-2*k+1)*F(m,k)=2*m*(2*m-1)*F(m-1,k)+m*(m-1)*F(m-2,k-1).

A385567 Triangle read by rows: T(n,k) is the numerator of A(n,k), such that A(n,k) satisfies the identity for sums of odd powers: Sum_{k=1..p} k^(2n-1) = 1/(2*n) * Sum_{k=0..n-1} A(n,k) * (p^2+p)^(n-k), for all integers p >= 1.

Original entry on oeis.org

1, 1, 1, 1, 0, -1, 1, -1, 0, 1, 1, -4, 2, 0, -1, 1, -5, 3, -3, 0, 5, 1, -4, 17, -10, 5, 0, -691, 1, -35, 287, -118, 691, -691, 0, 7, 1, -8, 112, -352, 718, -280, 140, 0, -3617, 1, -21, 66, -293, 4557, -3711, 10851, -10851, 0, 43867, 1, -40, 217, -4516, 2829, -26332, 750167, -438670, 219335, 0, -174611
Offset: 0

Views

Author

Kolosov Petro, Jul 31 2025

Keywords

Comments

The companion triangle with the denominators is A386728.
Extension of A093556 with k in the range 0 <= k <= n, and n >= 0.

Examples

			Triangle begins:
---------------------------------------------------------------------------------
k =   0    1     2     3     4       5       6        7       8      9      10
---------------------------------------------------------------------------------
n=0:  1;
n=1:  1,   1;
n=2:  1,   0,  -1;
n=3:  1,  -1,   0,     1;
n=4:  1,  -4,   2,     0,   -1;
n=5:  1,  -5,   3,    -3,    0,      5;
n=6:  1,  -4,  17,   -10,    5,      0,   -691;
n=7:  1, -35, 287,  -118,  691,   -691,      0,       7;
n=8:  1,  -8, 112,  -352,  718,   -280,    140,       0,  -3617;
n=9:  1, -21,  66,  -293, 4557,  -3711,  10851,  -10851,      0, 43867;
n=10: 1, -40, 217, -4516, 2829, -26332, 750167, -438670, 219335,     0, -174611;
...
		

Crossrefs

Programs

  • Mathematica
    FaulhaberCoefficient[n_, k_] := 0;
    FaulhaberCoefficient[n_, k_] := (-1)^(n - k) * Sum[Binomial[2 n, n - k - j]* Binomial[n - k + j, j] * (n - k - j)/(n - k + j) * BernoulliB[n + k + j], {j, 0, n - k}] /; 0 <= k < n;
    FaulhaberCoefficient[n_, k_] := BernoulliB[2 n] /; k == n;
    Flatten[Table[Numerator[FaulhaberCoefficient[n, k]], {n, 0, 10}, {k, 0, n}]]
  • PARI
    T(n,k) = numerator(if (k==n, bernfrac(2*n), if (kMichel Marcus, Aug 03 2025

Formula

A(n,k) = 0 if k>n or n<0
A(n,k) = (-1)^(n - k) * Sum_{j=0..n-k} binomial(2n, n - k - j) * binomial(n - k + j, j) * (n - k - j)/(n - k + j) * B_{n + k + j}, if 0 <= k < n;
A(n,k) = B_{2n}, if k = n;
T(n,k) = numerator(A(n,k)).

A386728 Triangle read by rows: T(n,k) is the denominator of A(n,k), such that A(n,k) satisfies the identity for sums of odd powers: Sum_{k=1..p} k^(2n-1) = 1/(2*n) * Sum_{k=0..n-1} A(n,k) * (p^2+p)^(n-k), for all integers p >= 1.

Original entry on oeis.org

1, 1, 6, 1, 1, 30, 1, 2, 1, 42, 1, 3, 3, 1, 30, 1, 2, 1, 2, 1, 66, 1, 1, 2, 1, 1, 1, 2730, 1, 6, 15, 3, 15, 30, 1, 6, 1, 1, 3, 3, 3, 1, 1, 1, 510, 1, 2, 1, 1, 5, 2, 5, 10, 1, 798, 1, 3, 2, 7, 1, 3, 42, 21, 21, 1, 330, 1, 2, 3, 2, 1, 6, 15, 3, 5, 10, 1, 138, 1
Offset: 0

Views

Author

Kolosov Petro, Jul 31 2025

Keywords

Comments

The companion triangle with the numerators is A385567.
Extension of A093557 with k in the range 0 <= k <= n.

Examples

			Triangle begins:
  ---------------------------------------------------------
  k =   0  1   2   3    4    5    6   7    8    9    10
  ---------------------------------------------------------
  n=0:  1;
  n=1:  1, 6;
  n=2:  1, 1, 30;
  n=3:  1, 2,  1, 42;
  n=4:  1, 3,  3,  1, 30;
  n=5:  1, 2,  1,  2,  1, 66;
  n=6:  1, 1,  2,  1,  1,  1, 2730;
  n=7:  1, 6, 15,  3, 15, 30,    1,  6;
  n=8:  1, 1,  3,  3,  3,  1,    1,  1, 510;
  n=9:  1, 2,  1,  1,  5,  2,    5, 10,   1, 798;
  n=10: 1, 3,  2,  7,  1,  3,   42, 21,  21,   1, 330;
  ...
		

Crossrefs

Programs

  • Mathematica
    FaulhaberCoefficient[n_, k_] := 0;
    FaulhaberCoefficient[n_, k_] := (-1)^(n - k) * Sum[Binomial[2 n, n - k - j]* Binomial[n - k + j, j] * (n - k - j)/(n - k + j) * BernoulliB[n + k + j], {j, 0, n - k}] /; 0 <= k < n;
    FaulhaberCoefficient[n_, k_] := BernoulliB[2 n] /; k == n;
    Flatten[Table[Denominator[FaulhaberCoefficient[n, k]], {n, 0, 10}, {k, 0, n}]]
  • PARI
    T(n,k) = denominator(if (k==n, bernfrac(2*n), if (kMichel Marcus, Aug 03 2025

Formula

A(n,k) = 0 if k>n or n<0;
A(n,k) = (-1)^(n - k) * Sum_{j=0..n-k} binomial(2n, n - k - j) * binomial(n - k + j, j) * (n - k - j)/(n - k + j) * B_{n + k + j}, if 0 <= k < n;
A(n,k) = B_{2n}, if k = n;
T(n,k) = denominator(A(n,k)).
Showing 1-6 of 6 results.