A093603 Bisecting a triangular cake using a curved cut of minimal length: decimal expansion of sqrt(Pi/sqrt(3))/2 = d/2, where d^2 = Pi/sqrt(3).
6, 7, 3, 3, 8, 6, 8, 4, 3, 5, 4, 4, 2, 9, 9, 1, 8, 0, 3, 0, 9, 5, 4, 0, 1, 1, 8, 7, 7, 3, 0, 8, 2, 1, 6, 6, 7, 7, 2, 1, 6, 7, 7, 0, 1, 8, 2, 7, 0, 0, 3, 9, 7, 3, 0, 9, 9, 8, 0, 1, 6, 6, 1, 3, 7, 3, 7, 9, 7, 9, 0, 1, 8, 2, 6, 2, 9, 5, 5, 0, 3, 2, 0, 0, 8, 2, 8, 3, 1, 5, 0, 3, 0, 7, 7, 5, 9, 6, 1, 5, 3, 8, 6, 4, 6
Offset: 0
Examples
0.67338684354429918030954011877308216677216770182700......
References
- P. Halmos, Problems for Mathematicians Young and Old, Math. Assoc. of Amer. Washington DC 1991.
- C. W. Triggs, Mathematical Quickies, Dover NY 1985.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Scott Carr, Bisecting an arbitrary triangular cake (with a straight cut of shortest length)
Crossrefs
Cf. A093604.
Programs
-
Mathematica
RealDigits[Sqrt[Pi]/(2*3^(1/4)), 10, 50][[1]] (* G. C. Greubel, Jan 13 2017 *)
-
PARI
sqrt(Pi/sqrt(3))/2 \\ G. C. Greubel, Jan 13 2017
Formula
This is sqrt(Pi)/(2*3^(1/4)).
Comments