A093640 Number of divisors of n whose binary representation is contained in that of n.
1, 2, 2, 3, 2, 4, 2, 4, 2, 4, 2, 6, 2, 4, 3, 5, 2, 4, 2, 6, 2, 4, 2, 8, 2, 4, 3, 6, 2, 6, 2, 6, 2, 4, 2, 6, 2, 4, 3, 8, 2, 4, 2, 6, 4, 4, 2, 10, 2, 4, 3, 6, 2, 6, 4, 8, 3, 4, 2, 9, 2, 4, 4, 7, 2, 4, 2, 6, 2, 4, 2, 8, 2, 4, 4, 6, 2, 6, 2, 10, 2, 4, 2, 6, 3, 4, 3, 8, 2, 8, 3, 6, 3, 4, 3, 12, 2, 4, 3, 6, 2
Offset: 1
Examples
n = 18: divisors of 18: 1 = '1', 2 = '10', 3 = '11', 6 = '110', 9 = '1001' and 18 = '10010': four of them are binary substrings of '10010', therefore a(18) = 4.
Links
Programs
-
Haskell
import Data.List (isInfixOf) a093640 n = length [d | d <- [1..n], mod n d == 0, show (a007088 d) `isInfixOf` show (a007088 n)] -- Reinhard Zumkeller, Jan 22 2012
-
Mathematica
a[n_] := DivisorSum[n, 1 &, StringContainsQ @@ IntegerString[{n, #}, 2] &]; Array[a, 100] (* Amiram Eldar, Jul 16 2022 *)
-
Python
from sympy import divisors def a(n): s = bin(n)[2:] return sum(1 for d in divisors(n, generator=True) if bin(d)[2:] in s) print([a(n) for n in range(1, 102)]) # Michael S. Branicky, Jul 11 2022