cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A097710 Lower triangular matrix T, read by rows, such that row (n) is formed from the sums of adjacent terms in row (n-1) of the matrix square T^2, with T(0,0)=1.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 7, 13, 7, 1, 41, 88, 61, 15, 1, 397, 951, 781, 257, 31, 1, 6377, 16691, 15566, 6231, 1041, 63, 1, 171886, 484490, 500057, 231721, 48303, 4161, 127, 1, 7892642, 23701698, 26604323, 13843968, 3406505, 374127, 16577, 255, 1
Offset: 0

Views

Author

Paul D. Hanna, Aug 22 2004

Keywords

Comments

Column 0 is equal to sequence A008934, which is the number of tournament sequences.
This triangle has the same row sums and first column terms as in rows 2^n, for n>=0, of triangle A093654.

Examples

			Rows of this triangle T begin:
       1;
       1,      1;
       2,      3,      1;
       7,     13,      7,      1;
      41,     88,     61,     15,     1;
     397,    951,    781,    257,    31,    1;
    6377,  16691,  15566,   6231,  1041,   63,   1;
  171886, 484490, 500057, 231721, 48303, 4161, 127, 1;
Rows of T^2 begin:
        1;
        2,        1;
        7,        6,        1;
       41,       47,       14,       1;
      397,      554,      227,      30,      1;
     6377,    10314,     5252,     979,     62,     1;
   171886,   312604,   187453,   44268,   4035,   126,   1;
  7892642, 15809056, 10795267, 3048701, 357804, 16323, 254, 1;
The sums of adjacent terms in row (n) of T^2 forms row (n+1) of T:
  T(5,0) = T^2(4,0) = 397;
  T(5,1) = T^2(4,0) + T^2(4,1) = 397 + 554 = 951;
  T(5,2) = T^2(4,1) + T^2(4,2) = 554 + 227 = 781.
Rows of matrix inverse T^(-1) begins:
   1;
  -1,     1;
   1,    -3,      1;
  -1,     8,     -7,     1;
   1,   -25,     44,   -15,      1;
  -1,   111,   -346,   208,    -31,    1;
   1,  -809,   4045, -3720,    912,  -63,    1;
  -1, 10360, -77351, 99776, -35136, 3840, -127, 1; ...
which is a signed version of A097712.
		

Crossrefs

Cf. A008934 (column k=0), A093657 (row sums), A097711 (column k=1).

Programs

  • Mathematica
    T[n_, k_] := T[n, k] = Which[n<0 || k>n, 0, n == k, 1, k == 0, Sum[T[n-1, j]*T[j, 0], {j, 0, n-1}], True, Sum[T[n-1, j]*T[j, k-1], {j, 0, n-1}] + Sum[T[n-1, j]*T[j, k], {j, 0, n-1}]]; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 23 2016, adapted from PARI *)
  • PARI
    /* Using Recurrence relation: */
    {T(n,k) = if(n<0||k>n, 0, if(n==k,1, if(k==0, sum(j=0,n-1, T(n-1,j)*T(j,0)),  sum(j=0,n-1, T(n-1,j)*T(j,k-1)) + sum(j=0,n-1, T(n-1,j)*T(j,k));)))}
    for(n=0,8, for(k=0,n, print1(T(n,k),", "));print(""))
    
  • PARI
    /* Faster: using Matrix generating method: */
    {T(n,k) = my(M=matrix(2,2,r,c,if(r>=c,1))); for(i=1,n,
    N=matrix(#M+1,#M+1,r,c, if(r>=c, if(r<=#M,M[r,c], if(c>1,(M^2)[r-1,c-1]) + if(c<=#M,(M^2)[r-1,c])) ));
    M=N;); M[n+1,k+1]}
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print("")) \\ Paul D. Hanna, Nov 27 2016
    
  • SageMath
    @CachedFunction
    def T(n, k): # T = A097710
        if n< 0 or k<0 or k>n: return 0
        elif k==n: return 1
        elif k==0: return sum(T(n-1,j)*T(j,0) for j in range(n))
        else: return sum(T(n-1, j)*(T(j, k-1)+T(j,k)) for j in range(n))
    flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Feb 21 2024

Formula

T(n, k) = T^2(n-1, k-1) + T^2(n-1, k) for n>=1 and k>1, with T(n, 1) = T^2(n-1, 1) and T(n,n) = 1 for n>=0, where T^2 is the matrix square of this triangle T.
T(n, k) = Sum_{j=0..n-1} T(n-1, j)*(T(j, k-1) + T(j,k)), with T(n, 0) = Sum_{j=0..n-1} T(n-1,j)*T(j,0), and T(n, n) = 1.
T(n, 0) = A008934(n).
T(n, 1) = A097711(n).
Sum_{k=0..n} T(n, k) = A093657(n+1) (row sums).
From G. C. Greubel, Feb 21 2024: (Start)
T(n, n-1) = A000225(n).
Sum_{k=0..n} (-1)^k*T(n, k) = A000007(n). (End)

A093654 Lower triangular matrix, read by rows, defined as the convergent of the concatenation of matrices using the iteration: M(n+1) = [[M(n),0*M(n)],[M(n)^2,M(n)^2]], with M(0) = [1].

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 2, 1, 2, 1, 1, 0, 0, 0, 1, 2, 1, 0, 0, 2, 1, 2, 0, 1, 0, 2, 0, 1, 7, 2, 4, 1, 7, 2, 4, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 2, 1, 2, 0, 1, 0, 0, 0, 0, 0, 2, 0, 1, 7, 2, 4, 1, 0, 0, 0, 0, 7, 2, 4, 1, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 7, 2, 0, 0, 4, 1, 0, 0, 7, 2, 0, 0, 4, 1
Offset: 1

Views

Author

Paul D. Hanna, Apr 08 2004

Keywords

Comments

Related to the number of tournament sequences (A008934). First column forms A093655, where A093655(2^n) = A008934(n) for n>=0. Row sums form A093656, where A093656(2^(n-1)) = A093657(n) for n>=1.

Examples

			Let M(n) be the lower triangular matrix formed from the first 2^n rows.
To generate M(3) from M(2), take the matrix square of M(2):
[1,0,0,0]^2=[1,0,0,0]
[1,1,0,0]...[2,1,0,0]
[1,0,1,0]...[2,0,1,0]
[2,1,2,1]...[7,2,4,1]
and append M(2)^2 to the bottom left and bottom right of M(2):
[1],
[1,1],
[1,0,1],
[2,1,2,1],
.........
[1,0,0,0],[1],
[2,1,0,0],[2,1],
[2,0,1,0],[2,0,1],
[7,2,4,1],[7,2,4,1].
Repeating this process converges to triangle A093654.
		

Crossrefs

Formula

First column: T(2^n, 1) = A008934(n) for n>=0.
Showing 1-2 of 2 results.