A093658 Lower triangular matrix, read by rows, defined as the convergent of the concatenation of matrices using the iteration: M(n+1) = [[M(n),0*M(n)],[M(n)^2,M(n)]], with M(0) = [1].
1, 1, 1, 1, 0, 1, 2, 1, 1, 1, 1, 0, 0, 0, 1, 2, 1, 0, 0, 1, 1, 2, 0, 1, 0, 1, 0, 1, 6, 2, 2, 1, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 1, 1, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 6, 2, 2, 1, 0, 0, 0, 0, 2, 1, 1, 1, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 6, 2, 0, 0, 2, 1, 0, 0, 2, 1, 0, 0, 1, 1
Offset: 1
Examples
Let M(n) be the lower triangular matrix formed from the first 2^n rows. To generate M(3) from M(2), take the matrix square of M(2): [1,0,0,0]^2=[1,0,0,0] [1,1,0,0]...[2,1,0,0] [1,0,1,0]...[2,0,1,0] [2,1,1,1]...[6,2,2,1] and append M(2)^2 to the bottom left corner and M(2) to the bottom right: [1], [1,1], [1,0,1], [2,1,1,1], ......... [1,0,0,0],[1], [2,1,0,0],[1,1], [2,0,1,0],[1,0,1], [6,2,2,1],[2,1,1,1]. Repeating this process converges to triangle A093658.
Formula
T(2^n, 1) = n! for n>=0.
Comments