A093669 Numbers having a unique representation as ab+ac+bc, with 0 < a < b < c.
11, 14, 17, 19, 20, 27, 32, 34, 36, 43, 46, 49, 52, 64, 67, 73, 82, 97, 100, 142, 148, 163, 193
Offset: 1
Examples
11 is on the list because 11 = 1*2+1*3+2*3.
References
- See A025052.
Crossrefs
Programs
-
Mathematica
oneSol={}; Do[lim=Ceiling[(n-2)/3]; cnt=0; Do[If[n>a*b && Mod[n-a*b, a+b]==0 && Quotient[n-a*b, a+b]>b, cnt++; If[cnt>1, Break[]]], {a, 1, lim-1}, {b, a+1, lim}]; If[cnt==1, AppendTo[oneSol, n]], {n, 10000}]; oneSol
-
Python
from collections import Counter def aupto(N): acount = Counter() for i in range(1, N-1): for j in range(i+1, N//i + 1): p, s = i*j, i+j for k in range(j+1, (N-p)//s + 1): acount.update([p + s*k]) return sorted([k for k in acount if acount[k] == 1]) print(aupto(10**5)) # Michael S. Branicky, Nov 14 2021
Comments