A093689 Least k such that prime(n) divides A007406(k), the numerator of the k-th generalized harmonic number H(k,2) = Sum_{i=1..k} 1/i^2.
2, 3, 5, 6, 8, 9, 11, 14, 15, 15, 4, 11, 23, 26, 6, 30, 33, 35, 36, 39, 41, 44, 15, 50, 51, 39, 54, 56, 23, 65, 44, 69, 37, 75, 25, 61, 61, 86, 89, 85, 95, 96, 98, 99, 99, 111, 113, 114, 116, 119, 60, 125, 128, 131, 50, 135, 138, 140, 141, 146, 27, 43, 156, 158, 165, 168
Offset: 3
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 3..1000
- Eric Weisstein's World of Mathematics, Harmonic Number
- Eric Weisstein's World of Mathematics, Wolstenholme's Theorem
Programs
-
Mathematica
nn=1000; t=Numerator[HarmonicNumber[Range[nn], 2]]; Table[p=Prime[n]; i=1; While[i
0, i++ ]; i, {n, 3, PrimePi[nn]}]
Comments