A093694 Number of one-element transitions from the partitions of n to the partitions of n+1 for labeled parts.
1, 2, 5, 9, 17, 27, 46, 69, 108, 158, 234, 331, 476, 657, 915, 1244, 1694, 2262, 3029, 3988, 5257, 6844, 8901, 11461, 14749, 18809, 23958, 30304, 38263, 48018, 60167, 74977, 93276, 115509, 142772, 175759, 215991, 264449, 323216, 393772, 478884
Offset: 0
Keywords
Examples
In the labeled case, we have 9 one-element transitions from all partitions of n=3 to the partitions of n+1=4: [1,1,1] -> [1,1,1,1]; [1,1,1] -> [1,1,2]; [1,1,1] -> [1,1,2]; [1,1,1] -> [1,1,2]; [1,2] -> [1,1,2]; [1,2] -> [1,3]; [1,2] -> [2,2]; [3] -> [1,3]; [3] -> [4]. For n = 3 we have the following partitions of 3+1 = 4 which contain at least one part 1: [1111], [112], [13] and these partitions contain 4 + 3 + 2 = 9 = a(3) parts. There are a(4)=17 partitions of 4 into 2 sorts where all parts of the first sort precede all parts of the second sort. Here p:s stands for "part p of sort s": 01: [ 1:0 1:0 1:0 1:0 ] 02: [ 1:0 1:0 1:0 1:1 ] 03: [ 1:0 1:0 1:1 1:1 ] 04: [ 1:0 1:1 1:1 1:1 ] 05: [ 1:1 1:1 1:1 1:1 ] 06: [ 2:0 1:0 1:0 ] 07: [ 2:0 1:0 1:1 ] 08: [ 2:0 1:1 1:1 ] 09: [ 2:0 2:0 ] 10: [ 2:0 2:1 ] 11: [ 2:1 1:1 1:1 ] 12: [ 2:1 2:1 ] 13: [ 3:0 1:0 ] 14: [ 3:0 1:1 ] 15: [ 3:1 1:1 ] 16: [ 4:0 ] 17: [ 4:1 ] - _Joerg Arndt_, Apr 28 2013
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
main := proc(n::integer) local a,ndxp,ListOfPartitions; with(combinat): with(ListTools): ListOfPartitions:=partition(n-1); a:=0; for ndxp from 1 to nops(ListOfPartitions) do if Occurrences(1, ListOfPartitions[ndxp]) > 0 then a:=a+nops(Flatten(ListOfPartitions[ndxp])); print("ndxp, Flatten(ListOfPartitions[ndxp]):",ndxp, Flatten(ListOfPartitions[ndxp])); print("ndxp, ListOfPartitions[ndxp], a:",ndxp, ListOfPartitions[ndxp],a); # End of if-clause *** Occurrences(1, ListOfPartitions[ndxp]) *** fi; end do; print("n, a(n):",n,a); end proc; ## b:= proc(n,i) option remember; local x, y; if n<=0 or i=0 then [0, 0] elif i=1 then [1, n] else x:= b(n, i-1); y:= b(n-i, i); [x[1]+y[1], x[2]+y[2]+y[1]] fi end: a:= n-> b(n+1, n+1)[2]: seq(a(n), n=0..100); # Alois P. Heinz, Apr 24 2011
-
Mathematica
f[n_] := Block[{l = Sort[ Flatten[ IntegerPartitions[n]]]}, Length[l] - Count[l, 1]]; g[n_] := (f[n] + Sum[PartitionsP[k], {k, 0, n}]); Table[ g[n], {n, 0, 40}] (* Robert G. Wilson v, Jul 13 2004 *) b[n_, i_] := b[n, i] = Module[{x, y}, If[n <= 0 || i == 0, {0, 0}, If[i == 1, {1, n}, x = b[n, i-1]; y = b[n-i, i]; {x[[1]] + y[[1]], x[[2]] + y[[2]] + y[[1]]}]]]; a[n_] := b[n+1, n+1][[2]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Oct 10 2015, after Alois P. Heinz *)
-
PARI
a(n) = numbpart(n) + sum(m=1, n, numdiv(m)*numbpart(n - m)); \\ Indranil Ghosh, Apr 25 2017
-
Python
from sympy import divisor_count, npartitions def a(n): return npartitions(n) + sum([divisor_count(m)*npartitions(n - m) for m in range(1, n + 1)]) # Indranil Ghosh, Apr 25 2017
Formula
a(n) = Sum_k=1^p(n) (nops(p(k, n)) + 1), where p(n) is the number of partitions of n and nops(p(k, n)) is the number of parts in the k-th partition p(n, k) of n.
a(n) = Sum_k=1^p(n) nops(p(k, n)[subject to: at least one p(l, k, n) = 1]; p(n) = number of partitions of n, p(k, n) = k-th partition, p(l, k, n) = l-th part in the k-th partition p(k, n) of integer n.
G.f.: sum(n>=0, (n+1) * x^n / prod(k=1..n, 1-x^k ) ). - Joerg Arndt, Apr 17 2011
a(n) ~ exp(Pi*sqrt(2*n/3))*(2*gamma + log(6*n/Pi^2))/(4*Pi*sqrt(2*n)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Oct 24 2016
Extensions
More terms from Robert G. Wilson v, Jul 13 2004
Comments