cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093790 Hook products of all partitions of 11.

Original entry on oeis.org

17280, 17280, 25920, 25920, 30240, 30240, 32400, 32400, 33600, 34560, 34560, 36288, 36288, 40320, 40320, 40320, 40320, 43200, 43200, 48384, 48384, 57600, 57600, 60480, 60480, 67200, 67200, 72576, 72576, 86400, 86400, 103680, 103680, 120960, 120960, 158400, 172800, 172800, 190080, 190080, 241920, 241920, 302400, 302400, 332640, 332640, 362880, 362880, 887040, 887040, 907200, 907200, 3991680, 3991680, 39916800, 39916800
Offset: 1

Views

Author

Emeric Deutsch, May 17 2004

Keywords

Comments

All 56 terms of this finite sequence are shown.

Crossrefs

Row n=11 of A093784.

Programs

  • Maple
    H:=proc(pa) local F,j,p,Q,i,col,a,A: F:=proc(x) local i, ct: ct:=0: for i from 1 to nops(x) do if x[i]>1 then ct:=ct+1 else fi od: ct; end: for j from 1 to nops(pa) do p[1][j]:=pa[j] od: Q[1]:=[seq(p[1][j],j=1..nops(pa))]: for i from 2 to pa[1] do for j from 1 to F(Q[i-1]) do p[i][j]:=Q[i-1][j]-1 od: Q[i]:=[seq(p[i][j],j=1..F(Q[i-1]))] od: for i from 1 to pa[1] do col[i]:=[seq(Q[i][j]+nops(Q[i])-j,j=1..nops(Q[i]))] od: a:=proc(i,j) if i<=nops(Q[j]) and j<=pa[1] then Q[j][i]+nops(Q[j])-i else 1 fi end: A:=matrix(nops(pa),pa[1],a): product(product(A[m,n],n=1..pa[1]),m=1..nops(pa)); end: with(combinat): rev:=proc(a) [seq(a[nops(a)+1-i],i=1..nops(a))] end: sort([seq(H(rev(partition(11)[q])), q=1..numbpart(11))]);
  • Mathematica
    h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
    g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1&, n]]], If[i < 1, 0, Flatten@Table[g[n - i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]];
    T[n_] := g[n, n, {}];
    Sort[11!/T[11]] (* Jean-François Alcover, Sep 05 2024, after Alois P. Heinz in A060240 *)

Formula

a(n) = 11!/A003875(57-n).