A093826 In binary representation: least number, k, which occurs n times in its factorial.
5, 1, 16, 12, 49, 58, 60, 110, 209, 117, 240, 430, 255, 1423, 921, 980, 511, 1847, 3737, 3692, 3998, 7265, 15267, 15651, 15722, 31457, 32659, 64248, 57927, 64448, 64171, 250068, 129013, 501578, 256159, 510732, 980930, 979883
Offset: 0
Examples
12!_b = 11100100011001111110000000000 and 12_b = 1100 and the later string appears thrice in the former string.
Crossrefs
Cf. A093685.
Programs
-
Mathematica
f[n_] := ToString[ FromDigits[ IntegerDigits[n, 2]]]; g[n_] := Length[ StringPosition[ f[n! ], f[n]]]; a = Table[0, {30}]; Do[ b = g[n]; If[a[[b + 1]] == 0, a[[b + 1]] = n], {n, 29000}]; a
-
Python
from itertools import count, takewhile def count_overlaps(subs, s): c = i = 0 while i != -1: i = s.find(subs, i) if i != -1: c += 1; i += 1 return c def afind(limit): kfact, adict = 1, dict() for k in range(1, limit+1): kb, kfact = bin(k)[2:], kfact * k kfactb = bin(kfact)[2:] n = count_overlaps(kb, kfactb) if n not in adict: adict[n] = k return [adict[n] for n in takewhile(lambda i: i in adict, count(0))] print(afind(16000)) # Michael S. Branicky, May 01 2021
Extensions
a(25)-a(37) from Michael S. Branicky, May 03 2021
Comments