A093846
Triangle read by rows: T(n, k) = 10^(n-1) - 1 + k*floor(9*10^(n-1)/n), for 1 <= k <= n.
Original entry on oeis.org
9, 54, 99, 399, 699, 999, 3249, 5499, 7749, 9999, 27999, 45999, 63999, 81999, 99999, 249999, 399999, 549999, 699999, 849999, 999999, 2285713, 3571427, 4857141, 6142855, 7428569, 8714283, 9999997, 21249999, 32499999, 43749999, 54999999, 66249999, 77499999, 88749999, 99999999
Offset: 1
Triangle begins:
9;
54, 99;
399, 699, 999;
3249, 5499, 7749, 9999;
...
-
[[10^(n-1) -1 +k*Floor(9*10^(n-1)/n): k in [1..n]]: n in [1..8]]; // G. C. Greubel, Mar 22 2019
-
A093846 := proc(n,k) RETURN (10^(n-1)-1+k*floor(9*(10^(n-1)/n))); end; for n from 1 to 10 do for k from 1 to n do printf("%d,",A093846(n,k)); od; od; # R. J. Mathar, Jun 23 2006
-
Table[# -1 +k Floor[9 #/n] &[10^(n-1)], {n, 8}, {k, n}]//Flatten (* Michael De Vlieger, Jul 18 2016 *)
-
{T(n,k) = 10^(n-1) -1 +k*floor(9*10^(n-1)/n)}; \\ G. C. Greubel, Mar 22 2019
-
[[10^(n-1) -1 +k*floor(9*10^(n-1)/n) for k in (1..n)] for n in (1..8)] # G. C. Greubel, Mar 22 2019
A093850
Triangle T(n,k) = 10^(n-1) -1 + k*floor(9*10^(n-1)/(n+1)), with 1 <= r <= n, read by rows.
Original entry on oeis.org
4, 39, 69, 324, 549, 774, 2799, 4599, 6399, 8199, 24999, 39999, 54999, 69999, 84999, 228570, 357141, 485712, 614283, 742854, 871425, 2124999, 3249999, 4374999, 5499999, 6624999, 7749999, 8874999, 19999999, 29999999, 39999999, 49999999, 59999999, 69999999, 79999999, 89999999
Offset: 1
Triangle begins with:
4;
39, 69;
324, 549, 774;
2799, 4599, 6399, 8199;
24999, 39999, 54999, 69999, 84999;
....
-
[[10^(n-1) -1 +k*Floor(9*10^(n-1)/(n+1)): k in [1..n]]: n in [1..8]]; // G. C. Greubel, Mar 21 2019
-
A093850 := proc(n,r)
10^(n-1)-1+r*floor(9*10^(n-1)/(n+1)) ;
end proc:
seq(seq(A093850(n,r),r=1..n),n=1..14) ; # R. J. Mathar, Sep 28 2011
-
Table[# -1 +r*Floor[9*#/(n+1)] &[10^(n-1)], {n, 8}, {r, n}]//Flatten (* Michael De Vlieger, Jul 18 2016 *)
-
{T(n,k) = 10^(n-1) -1 +k*floor(9*10^(n-1)/(n+1))}; \\ G. C. Greubel, Mar 21 2019
-
[[10^(n-1) -1 +k*floor(9*10^(n-1)/(n+1)) for k in (1..n)] for n in (1..8)] # G. C. Greubel, Mar 21 2019
A093852
a(n) = 10^(n-1) - 1 + n*floor(9*10^(n-1)/(n+1)).
Original entry on oeis.org
4, 69, 774, 8199, 84999, 871425, 8874999, 89999999, 909999999, 9181818179, 92499999999, 930769230759, 9357142857140, 93999999999999, 943749999999999, 9470588235294111, 94999999999999999, 952631578947368403, 9549999999999999999, 95714285714285714279
Offset: 1
n-th row of the following triangle contains n uniformly located n-digit numbers. i.e. n terms of an arithmetic progression with 10^(n-1)-1 as the term preceding the first term and (n+1)-th term is the largest possible n-digit term.
Given the triangle defined in A093850:
...4;
..39 69;
.324 549 774;
2799 4599 6399 8199.....
then this sequence is the leading diagonal.
-
[10^(n-1) -1 +n*Floor(9*10^(n-1)/(n+1)): n in [1..25]]; // G. C. Greubel, Mar 21 2019
-
A093852 := proc(n)
r := n ;
10^(n-1)-1+r*floor(9*10^(n-1)/(n+1)) ;
end proc:
seq(A093852(n),n=1..50) ; # R. J. Mathar, Oct 01 2011
-
Table[10^(n-1) -1 +n*Floor[9*10^(n-1)/(n+1)], {n,25}] (* G. C. Greubel, Mar 21 2019 *)
-
{a(n) = 10^(n-1) -1 +n*floor(9*10^(n-1)/(n+1))}; \\ G. C. Greubel, Mar 21 2019
-
[10^(n-1) -1 +n*floor(9*10^(n-1)/(n+1)) for n in (1..25)] # G. C. Greubel, Mar 21 2019
Original entry on oeis.org
4, 39, 324, 2799, 24999, 228570, 2124999, 19999999, 189999999, 1818181817, 17499999999, 169230769229, 1642857142856, 15999999999999, 156249999999999, 1529411764705881, 14999999999999999, 147368421052631577, 1449999999999999999, 14285714285714285713
Offset: 1
The triangle starts in row n=1 as
4 9 # -1, -1+5, -1+2*5
39 69 99 # 9,9+30,9+2*30
324 549 774 999 # 99, 99+225, 99+2*225, 99+3*225
2799 4599 6399 8199 9999 # 999, 999+1800, 999+2*1800,..
...
The sequence contains the first column.
-
[10^(n-1) -1 +Floor(9*10^(n-1)/(n+1)): n in [1..20]]; // G. C. Greubel, Apr 02 2019
-
A093851 := proc(n) 10^(n-1)-1+floor(9*10^(n-1)/(n+1)) ; end proc: seq(A093851(n),n=1..20) ; # R. J. Mathar, Oct 14 2010
-
Table[10^(n-1) -1 +Floor[9*10^(n-1)/(n+1)], {n, 1, 20}] (* G. C. Greubel, Apr 02 2019 *)
-
{a(n) = 10^(n-1) -1 +floor(9*10^(n-1)/(n+1))}; \\ G. C. Greubel, Apr 02 2019
-
[10^(n-1) -1 +floor(9*10^(n-1)/(n+1)) for n in (1..20)] # G. C. Greubel, Apr 02 2019
Showing 1-4 of 4 results.
Comments