A093875 Denominators in Kepler's tree of harmonic fractions.
1, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 4, 4, 5, 5, 5, 5, 7, 7, 7, 7, 8, 8, 5, 5, 7, 7, 7, 7, 8, 8, 6, 6, 9, 9, 10, 10, 11, 11, 9, 9, 12, 12, 11, 11, 13, 13, 6, 6, 9, 9, 10, 10, 11, 11, 9, 9, 12, 12, 11, 11, 13, 13, 7, 7, 11, 11, 13, 13, 14, 14, 13, 13, 17, 17, 15, 15, 18, 18, 11, 11, 16, 16
Offset: 1
Examples
The first few fractions are: 1 1 1 1 2 1 2 1 3 2 3 1 3 2 3 1 4 3 4 2 5 3 5 1 4 3 4 2 5 3 5 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ... 1 2 2 3 3 3 3 4 4 5 5 4 4 5 5 5 5 7 7 7 7 8 8 5 5 7 7 7 7 8 8
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Index entries for fraction trees
Crossrefs
Programs
-
Mathematica
num[1] = num[2] = 1; den[1] = 1; den[2] = 2; num[n_?EvenQ] := num[n] = num[n/2]; den[n_?EvenQ] := den[n] = num[n/2] + den[n/2]; num[n_?OddQ] := num[n] = den[(n-1)/2]; den[n_?OddQ] := den[n] = num[(n-1)/2] + den[(n-1)/2]; A093875 = Table[den[n], {n, 1, 83}] (* Jean-François Alcover, Dec 16 2011 *)
Formula
a(n) = a([n/2]) + A093873([n/2]).
Conjecture of the comment in detail: a(2n+1) = a(2n), n > 0; a(2n+1) = A071585(n), n >= 0; a(2n) = A071585(n), n > 0. - Yosu Yurramendi, Jun 22 2016
a(2n) - A093873(2n) = a(n), n > 0; a(2n+1) - A093873(2n+1) = A093873(n), n > 0. - Yosu Yurramendi, Jul 23 2016
From Yosu Yurramendi, Jul 25 2016: (Start)
a(2^m) = m+1, m >= 0; a(2^m + 2) = 2m - 1, m >= 1; a(2^m - 1) = A000045(m+2), m >= 1.
a(2^(m+1) + k) - a(2^m + k) = a(k), m > 0, 0 <= k < 2^m. For k=0, a(0) = 1 is needed.
a(2^(m+2) - k - 1) = a(2^(m+1) - k - 1) + a(2^m - k - 1), m >= 0, 0 <= k < 2^m. (End)
Comments