cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093875 Denominators in Kepler's tree of harmonic fractions.

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 4, 4, 5, 5, 5, 5, 7, 7, 7, 7, 8, 8, 5, 5, 7, 7, 7, 7, 8, 8, 6, 6, 9, 9, 10, 10, 11, 11, 9, 9, 12, 12, 11, 11, 13, 13, 6, 6, 9, 9, 10, 10, 11, 11, 9, 9, 12, 12, 11, 11, 13, 13, 7, 7, 11, 11, 13, 13, 14, 14, 13, 13, 17, 17, 15, 15, 18, 18, 11, 11, 16, 16
Offset: 1

Views

Author

Keywords

Comments

Form a tree of fractions by beginning with 1/1 and then giving every node i/j two descendants labeled i/(i+j) and j/(i+j).
It appears that A071585 is a bisection of this sequence, which itself is a bisection of A093873. - Yosu Yurramendi, Jan 09 2016

Examples

			The first few fractions are:
1 1 1 1 2 1 2 1 3 2 3 1 3 2 3 1 4 3 4 2 5 3 5 1 4 3 4 2 5 3 5
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ...
1 2 2 3 3 3 3 4 4 5 5 4 4 5 5 5 5 7 7 7 7 8 8 5 5 7 7 7 7 8 8
		

Crossrefs

The numerators are in A093873. Usually one only considers the left-hand half of the tree, which gives the fractions A020651/A086592. See A086592 for more information, references to Kepler, etc.

Programs

  • Mathematica
    num[1] = num[2] = 1; den[1] = 1; den[2] = 2; num[n_?EvenQ] := num[n] = num[n/2]; den[n_?EvenQ] := den[n] = num[n/2] + den[n/2]; num[n_?OddQ] := num[n] = den[(n-1)/2]; den[n_?OddQ] := den[n] = num[(n-1)/2] + den[(n-1)/2]; A093875 = Table[den[n], {n, 1, 83}] (* Jean-François Alcover, Dec 16 2011 *)

Formula

a(n) = a([n/2]) + A093873([n/2]).
Conjecture of the comment in detail: a(2n+1) = a(2n), n > 0; a(2n+1) = A071585(n), n >= 0; a(2n) = A071585(n), n > 0. - Yosu Yurramendi, Jun 22 2016
a(2n) - A093873(2n) = a(n), n > 0; a(2n+1) - A093873(2n+1) = A093873(n), n > 0. - Yosu Yurramendi, Jul 23 2016
From Yosu Yurramendi, Jul 25 2016: (Start)
a(2^m) = m+1, m >= 0; a(2^m + 2) = 2m - 1, m >= 1; a(2^m - 1) = A000045(m+2), m >= 1.
a(2^(m+1) + k) - a(2^m + k) = a(k), m > 0, 0 <= k < 2^m. For k=0, a(0) = 1 is needed.
a(2^(m+2) - k - 1) = a(2^(m+1) - k - 1) + a(2^m - k - 1), m >= 0, 0 <= k < 2^m. (End)