A093918 a(2k-1)=(2k-1)^2+k, a(2k)=6k^2+k+1: Last term in rows of triangle A093915.
2, 8, 11, 27, 28, 58, 53, 101, 86, 156, 127, 223, 176, 302, 233, 393, 298, 496, 371, 611, 452, 738, 541, 877, 638, 1028, 743, 1191, 856, 1366, 977, 1553, 1106, 1752, 1243, 1963, 1388, 2186, 1541, 2421, 1702, 2668, 1871, 2927, 2048, 3198, 2233, 3481, 2426, 3776
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (0,3,0,-3,0,1).
Programs
-
Mathematica
LinearRecurrence[{0,3,0,-3,0,1},{2,8,11,27,28,58},50] (* Harvey P. Dale, Oct 22 2013 *)
-
PARI
A093918(n)=if(n%2,n^2,6*(n\2)^2)+n\2+1 \\ M. F. Hasler, Apr 04 2009
Formula
a(n) = (3+(-1)^n+2*n+(5+(-1)^n)*n^2)/4. a(n) = 3*a(n-2)-3*a(n-4)+a(n-6). G.f.: -x*(x^2+2*x+2)*(x^3-x^2+3*x+1) / ((x-1)^3*(x+1)^3). - Colin Barker, Dec 18 2012
Extensions
Edited and extended beyond a(6) by M. F. Hasler, Apr 04 2009
Comments