cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A093918 a(2k-1)=(2k-1)^2+k, a(2k)=6k^2+k+1: Last term in rows of triangle A093915.

Original entry on oeis.org

2, 8, 11, 27, 28, 58, 53, 101, 86, 156, 127, 223, 176, 302, 233, 393, 298, 496, 371, 611, 452, 738, 541, 877, 638, 1028, 743, 1191, 856, 1366, 977, 1553, 1106, 1752, 1243, 1963, 1388, 2186, 1541, 2421, 1702, 2668, 1871, 2927, 2048, 3198, 2233, 3481, 2426, 3776
Offset: 1

Views

Author

Amarnath Murthy, Apr 25 2004

Keywords

Comments

Initially defined as "leading diagonal" of the triangle A093915, a(n) is the last term in row n of A093915, i.e. a(n)=A093916(n)+n-1. - M. F. Hasler, Apr 04 2009

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,3,0,-3,0,1},{2,8,11,27,28,58},50] (* Harvey P. Dale, Oct 22 2013 *)
  • PARI
    A093918(n)=if(n%2,n^2,6*(n\2)^2)+n\2+1 \\ M. F. Hasler, Apr 04 2009

Formula

Equals A093915 o A000217 = A093916 + A023443. - M. F. Hasler, Apr 04 2009
a(n) = (3+(-1)^n+2*n+(5+(-1)^n)*n^2)/4. a(n) = 3*a(n-2)-3*a(n-4)+a(n-6). G.f.: -x*(x^2+2*x+2)*(x^3-x^2+3*x+1) / ((x-1)^3*(x+1)^3). - Colin Barker, Dec 18 2012

Extensions

Edited and extended beyond a(6) by M. F. Hasler, Apr 04 2009

A093916 a(2*k-1) = (2*k-1)^2 + 2 - k, a(2*k) = 6*k^2 + 2 - k: First column of the triangle A093915.

Original entry on oeis.org

2, 7, 9, 24, 24, 53, 47, 94, 78, 147, 117, 212, 164, 289, 219, 378, 282, 479, 353, 592, 432, 717, 519, 854, 614, 1003, 717, 1164, 828, 1337, 947, 1522, 1074, 1719, 1209, 1928, 1352, 2149, 1503, 2382, 1662, 2627, 1829, 2884, 2004, 3153, 2187, 3434, 2378, 3727, 2577, 4032, 2784, 4349, 2999, 4678, 3222, 5019, 3453, 5372
Offset: 1

Views

Author

Amarnath Murthy, Apr 25 2004

Keywords

Comments

The sequence was initially defined as the first column of the triangle A093915, constructed by trial and error. It is however easy to prove that the sum of the r-th row of A093915, A093917(r), equals twice A006003(r) when r is odd, and three times A006003(r) when r is even. Given the expression of the row sum A093917(r) in terms of the first element a(r), one obtains the explicit formula for a(r). - M. F. Hasler, Apr 04 2009

Crossrefs

Programs

  • Magma
    [(n*(5*n-2) + (-1)^n*(n^2+1) + 7)/4: n in [1..70]]; // G. C. Greubel, Dec 30 2021
    
  • Mathematica
    LinearRecurrence[{0,3,0,-3,0,1},{2,7,9,24,24,53},80] (* Harvey P. Dale, Nov 24 2017 *)
  • PARI
    A093916(n)=((n^2+1)*(3-n%2)-n+1)/2
    /* or the "experimental" version, trying out all allowed values */
    A093916(n)={ local( s=(n^3+n)/2, d=(n^2-n)/2, k=ceil((2*s-d)/n)); while( (n*k+d)%s, k++ ); k } \\ M. F. Hasler, Apr 04 2009
    
  • SageMath
    [(5*n^2 -2*n +7 +(-1)^n*(n^2 +1))/4 for n in (1..70)] # G. C. Greubel, Dec 30 2021

Formula

a(n) = ((n^2+1)*b(n) - n + 1)/2 where b(n) = 3 - (n mod 2) = 2 if n odd, = 3 if n even. - M. F. Hasler, Apr 04 2009
From Colin Barker, May 01 2012: (Start)
a(n) = (n*(5*n-2) + (n^2+1)*(-1)^n + 7)/4.
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6).
G.f.: x*(2+7*x+3*x^2+3*x^3+3*x^4+2*x^5)/((1-x)^3*(1+x)^3). (End)
E.g.f.: (1/4)*( (7 +3*x +5*x^2)*exp(x) - 8 + (1 -x +x^2)*exp(-x) ). - G. C. Greubel, Dec 30 2021

Extensions

Edited and extended by M. F. Hasler, Apr 04 2009

A093917 a(n) = n^3+n for odd n, (n^3+n)*3/2 for even n: Row sums of A093915.

Original entry on oeis.org

2, 15, 30, 102, 130, 333, 350, 780, 738, 1515, 1342, 2610, 2210, 4137, 3390, 6168, 4930, 8775, 6878, 12030, 9282, 16005, 12190, 20772, 15650, 26403, 19710, 32970, 24418, 40545, 29822, 49200, 35970, 59007, 42910, 70038, 50690, 82365, 59358
Offset: 1

Views

Author

Amarnath Murthy, Apr 25 2004

Keywords

Comments

Initially defined as sum of the n-th row of the triangle A093915, constructed by trial and error. Namely, this row should contain n consecutive integers [x,x+1,...,x+n-1], listed in A093915, and have its sum a(n) = n*x+n(n-1)/2 equal to the least possible strict (>1) multiple of the sum of the indices of these elements in A093915, which equals A006003(n) = (n^3+n)/2. For odd n, a(n) = 2 A006003(n) is obtained for x = A093916(n). For even n, the sum a(n) cannot equal 2 A006003(n), but it does equal 3 A006003(n) for x = A093916(n). Hence this simple explicit definition of a(n). - M. F. Hasler, Apr 04 2009

Crossrefs

Formula

a(n) = n*A093916(n)+n(n-1)/2. - M. F. Hasler, Apr 04 2009
a(2n-1) = 2*(2n-1)*(2n^2 -2n +1), a(2n) = 3*n*(4n^2 +1).
G.f.: x*(2+15*x+22*x^2+42*x^3+22*x^4+15*x^5+2*x^6) / ( (x-1)^4*(1+x)^4 ). - R. J. Mathar, Mar 21 2016

Extensions

More terms from Jorge Coveiro, Jul 25 2006
Edited by M. F. Hasler, Apr 04 2009
Showing 1-3 of 3 results.