cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093916 a(2*k-1) = (2*k-1)^2 + 2 - k, a(2*k) = 6*k^2 + 2 - k: First column of the triangle A093915.

Original entry on oeis.org

2, 7, 9, 24, 24, 53, 47, 94, 78, 147, 117, 212, 164, 289, 219, 378, 282, 479, 353, 592, 432, 717, 519, 854, 614, 1003, 717, 1164, 828, 1337, 947, 1522, 1074, 1719, 1209, 1928, 1352, 2149, 1503, 2382, 1662, 2627, 1829, 2884, 2004, 3153, 2187, 3434, 2378, 3727, 2577, 4032, 2784, 4349, 2999, 4678, 3222, 5019, 3453, 5372
Offset: 1

Views

Author

Amarnath Murthy, Apr 25 2004

Keywords

Comments

The sequence was initially defined as the first column of the triangle A093915, constructed by trial and error. It is however easy to prove that the sum of the r-th row of A093915, A093917(r), equals twice A006003(r) when r is odd, and three times A006003(r) when r is even. Given the expression of the row sum A093917(r) in terms of the first element a(r), one obtains the explicit formula for a(r). - M. F. Hasler, Apr 04 2009

Crossrefs

Programs

  • Magma
    [(n*(5*n-2) + (-1)^n*(n^2+1) + 7)/4: n in [1..70]]; // G. C. Greubel, Dec 30 2021
    
  • Mathematica
    LinearRecurrence[{0,3,0,-3,0,1},{2,7,9,24,24,53},80] (* Harvey P. Dale, Nov 24 2017 *)
  • PARI
    A093916(n)=((n^2+1)*(3-n%2)-n+1)/2
    /* or the "experimental" version, trying out all allowed values */
    A093916(n)={ local( s=(n^3+n)/2, d=(n^2-n)/2, k=ceil((2*s-d)/n)); while( (n*k+d)%s, k++ ); k } \\ M. F. Hasler, Apr 04 2009
    
  • SageMath
    [(5*n^2 -2*n +7 +(-1)^n*(n^2 +1))/4 for n in (1..70)] # G. C. Greubel, Dec 30 2021

Formula

a(n) = ((n^2+1)*b(n) - n + 1)/2 where b(n) = 3 - (n mod 2) = 2 if n odd, = 3 if n even. - M. F. Hasler, Apr 04 2009
From Colin Barker, May 01 2012: (Start)
a(n) = (n*(5*n-2) + (n^2+1)*(-1)^n + 7)/4.
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6).
G.f.: x*(2+7*x+3*x^2+3*x^3+3*x^4+2*x^5)/((1-x)^3*(1+x)^3). (End)
E.g.f.: (1/4)*( (7 +3*x +5*x^2)*exp(x) - 8 + (1 -x +x^2)*exp(-x) ). - G. C. Greubel, Dec 30 2021

Extensions

Edited and extended by M. F. Hasler, Apr 04 2009