cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A136512 Produced by same formula that gives A093934 (signed tournaments), but with LCM instead of GCD in the exponent.

Original entry on oeis.org

1, 2, 4, 12, 64, 616, 10304, 293744, 14381056, 1242433312, 196990542848, 59624929814720, 35242762808786944, 40573409794074305152, 89317952471536946659328, 368970766373159503907450624, 2827862662172992194150488080384, 40061570271801436240253461050024448, 1050869620561002649814192493096912289792
Offset: 0

Views

Author

N. J. A. Sloane, Jul 21 2009

Keywords

Crossrefs

Cf. A093934.

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, lcm(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
    oddp(v) = {for(i=1, #v, if(bitand(v[i], 1)==0, return(0))); 1}
    a(n) = {my(s=0); forpart(p=n, if(oddp(p), s+=permcount(p)*2^(#p+edges(p)))); s/n!} \\ Andrew Howroyd, Feb 29 2020

Formula

a(n) = Sum_{j} (1/(Product (k^(j_k) (j_k)!))) * 2^{t_j},
where j runs through all partitions of n into odd parts, say with j_1 parts of size 1, j_3 parts of size 3, etc.,
and t_j = (1/2)*[ Sum_{r=1..n, s=1..n} j_r j_s lcm(r,s) + Sum_{r} j_r ].
Showing 1-1 of 1 results.