A093950 Expansion of 1 / (chi(-x) * chi(-x^7)) in powers of x where chi() is a Ramanujan theta function.
1, 1, 1, 2, 2, 3, 4, 6, 7, 9, 12, 14, 18, 22, 28, 34, 41, 50, 60, 72, 86, 105, 124, 146, 174, 204, 240, 282, 332, 386, 450, 524, 606, 703, 812, 940, 1082, 1243, 1428, 1636, 1873, 2140, 2448, 2788, 3172, 3610, 4096, 4646, 5264, 5962, 6736, 7606, 8582, 9666, 10884
Offset: 0
Keywords
Examples
G.f. = 1 + x + x^2 + 2*x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 6*x^7 + 7*x^8 + ... G.f. = q + q^4 + q^7 + 2*q^10 + 2*q^13 + 3*q^16 + 4*q^19 + 6*q^22 + ...
References
- A. Cayley, An elliptic-transcendant identity, Messenger of Math., 2 (1873), p. 179.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- A. Cayley, An elliptic-transcendant identity
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ Product[ 1 + x^k, {k, n}] Product[ 1 + x^k, {k, 7, n, 7}], {x, 0, n}]; a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x] QPochhammer[ -x^7, x^7], {x, 0, n}];
-
PARI
{a(n) = if( n<0, 0, polcoeff( prod( k=1, n, 1 + x^k, 1 + x * O(x^n)) * prod( k=1, n\7, 1 + x^(7*k), 1 + x * O(x^n)), n))};
-
PARI
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^14 + A) / (eta(x + A) * eta(x^7 + A)), n))};
Formula
Expansion of q^(-1/3) * (eta(q^2) * eta(q^14)) / (eta(q) * eta(q^7)) in powers of q.
Euler transform of period 14 sequence [ 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, ...].
Given g.f. A(x), then B(q) = q * A(q^3) satisfies 0 = f(B(q), B(q^2)) where f(u, v) = u^2 - v - 2*u*v^2.
G.f. is a period 1 Fourier series which satisfies f(-1 / (126 t)) = 1/2 * g(t) where q = exp(2 Pi i t) and g() is the g.f. of A102314. - Michael Somos, Dec 03 2013
G.f.: Product_{k>0} (1 + x^k) * (1 + x^(7*k)).
Convolution inverse of A102314.
a(n) = (-1)^n * A246762(n). - Michael Somos, Sep 02 2014
a(n) ~ exp(2*Pi*sqrt(2*n/21)) / (2^(7/4) * 21^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2015
Extensions
Entry revised by N. J. A. Sloane, Mar 15 2015 (with thanks to Doron Zeilberger)
Comments