cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093960 a(1) = 1, a(2) = 2, a(n+1) = n*a(1) + (n-1)*a(2) + ... + (n-r)*a(r+1) + ... + a(n).

Original entry on oeis.org

1, 2, 4, 11, 29, 76, 199, 521, 1364, 3571, 9349, 24476, 64079, 167761, 439204, 1149851, 3010349, 7881196, 20633239, 54018521, 141422324, 370248451, 969323029, 2537720636, 6643838879, 17393796001, 45537549124, 119218851371, 312119004989, 817138163596
Offset: 1

Views

Author

Amarnath Murthy, May 22 2004

Keywords

Comments

a(1) = a(2) = 1 gives A088305, i.e., Fibonacci numbers with even indices. This can be called 'fake Fibonacci sequence'. 4 = 3+1, 11 = 8+3, 29 = 21+8, 76 = 55+21, etc. a(n) = F(2n-2) + F(2n-4).
Except for the initial terms, this is the same as the bisection of the Lucas sequence (A002878). - Franklin T. Adams-Watters, Jul 17 2006

Crossrefs

Programs

  • Magma
    [1,2] cat [Lucas(2*n-3): n in [3..30]]; // G. C. Greubel, Dec 30 2021
    
  • Maple
    a[1]:=1: a[2]:=2: for n from 2 to 33 do a[n+1]:=sum((n-r)*a[r+1],r=0..n-1) od: seq(a[n],n=1..33); # Emeric Deutsch, Aug 01 2005
    A093960List := proc(m) local A, P, n; A := [1,2]; P := [1];
    for n from 1 to m - 2 do P := ListTools:-PartialSums([op(A), P[-1]]);
    A := [op(A), P[-1]] od; A end: A093960List(30); # Peter Luschny, Mar 24 2022
  • Mathematica
    Print[1]; Print[2]; Do[Print[Fibonacci[2*n - 2] + Fibonacci[2*n - 4]], {n, 3, 20}] (* Ryan Propper, Jun 19 2005 *)
    LinearRecurrence[{3,-1},{1,2,4,11},30] (* Harvey P. Dale, Nov 17 2018 *)
  • PARI
    Vec(x*(x-1)^2*(x+1)/(x^2-3*x+1) + O(x^100)) \\ Colin Barker, Mar 26 2015
    
  • Sage
    [2^(2-n)*bool(n<3) + lucas_number2(2*n-3, 1, -1) for n in (1..30)] # G. C. Greubel, Dec 30 2021

Formula

a(n) = F(2*n-2) + F(2*n-4), where F(k) is k-th Fibonacci number, n > 2.
a(n) = 3*a(n-1) - a(n-2) for n>4. - Colin Barker, Mar 26 2015
G.f.: x*(1-x)^2*(1+x) / (1-3*x+x^2). - Colin Barker, Mar 26 2015
a(n) = 2^(2-n)*[n<3] + LucasL(2*n-3). - G. C. Greubel, Dec 30 2021

Extensions

More terms from Ryan Propper, Jun 19 2005
More terms from Emeric Deutsch, Aug 01 2005