A093971 Number of sum-full subsets of {1,...,n}; subsets A such that there is a solution to x+y=z for x,y,z in A.
0, 1, 2, 7, 16, 40, 86, 195, 404, 873, 1795, 3727, 7585, 15537, 31368, 63582, 127933, 257746, 517312, 1038993, 2081696, 4173322, 8355792, 16731799, 33484323, 67014365, 134069494, 268234688, 536562699, 1073326281, 2146849378, 4294117419, 8588623348, 17178130162
Offset: 1
Keywords
Examples
The a(1) = 0 through a(5) = 16 subsets: . {1,2} {1,2} {1,2} {1,2} {1,2,3} {2,4} {2,4} {1,2,3} {1,2,3} {1,2,4} {1,2,4} {1,3,4} {1,2,5} {2,3,4} {1,3,4} {1,2,3,4} {1,4,5} {2,3,4} {2,3,5} {2,4,5} {1,2,3,4} {1,2,3,5} {1,2,4,5} {1,3,4,5} {2,3,4,5} {1,2,3,4,5}
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 1..88
- Eric Weisstein's World of Mathematics, Sum-Free Set
Crossrefs
The complement is counted by A007865.
The version without re-usable parts is A088809 (differences A364756), complement A085489 (differences A364755).
The version for partitions is A363225:
- ranks A364348,
- strict A363226,
- non-binary A364839,
- without re-usable parts A237113,
- non-binary without re-usable parts A237668.
The complement for partitions is A364345:
- ranks A364347,
- strict A364346,
- non-binary A364350,
- without re-usable parts A236912,
- non-binary without re-usable parts A237667.
Programs
-
Mathematica
Table[Length[Select[Subsets[Range[n]],Intersection[#,Total/@Tuples[#,2]]!={}&]],{n,0,10}] (* Gus Wiseman, Aug 14 2023 *)
Formula
a(n) = 2^n - A007865(n).
Extensions
Terms a(31) and beyond from Fausto A. C. Cariboni, Oct 01 2020
Comments