A093997 Number of partitions of n with an odd number of distinct Fibonacci parts.
0, 1, 1, 1, 0, 1, 1, 0, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 3, 1, 2, 2, 1, 2, 2, 2, 2, 0, 2, 2, 1, 3, 2, 3, 2, 1, 3, 2, 2, 3, 1, 2, 3, 2, 3, 1, 2, 2, 0, 3, 2, 2, 3, 2, 3, 3, 2, 4, 2, 2, 4, 1, 3, 3, 2, 4, 2, 3, 3, 1, 3, 3, 3, 4, 1, 3, 3, 1, 4, 2, 2, 2, 1, 3, 2, 2, 4, 2, 3, 4, 2, 4, 3, 3, 5, 1, 4, 4, 2
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10946
Crossrefs
Cf. A000119.
Programs
-
Maple
F:= combinat[fibonacci]: b:= proc(n, i, t) option remember; `if`(n=0, t, `if`(i<2, 0, b(n, i-1, t)+`if`(F(i)>n, 0, b(n-F(i), i-1, 1-t)))) end: a:= proc(n) local j; for j from ilog[(1+sqrt(5))/2](n+1) while F(j+1)<=n do od; b(n, j, 0) end: seq(a(n), n=0..100); # Alois P. Heinz, Jul 11 2013
-
Mathematica
Take[ CoefficientList[ Expand[ Product[1 + x^Fibonacci[k], {k, 2, 13}]/2 - Product[1 - x^Fibonacci[k], {k, 2, 13}]/2], x], 105] (* Robert G. Wilson v, May 29 2004 *)
Formula
G.f.: (Product_{k>=2} (1 + x^{F_k}) - Product_{k>=2} (1 - x^{F_k}))/2.
Extensions
Edited and extended by Robert G. Wilson v, May 29 2004