cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093997 Number of partitions of n with an odd number of distinct Fibonacci parts.

Original entry on oeis.org

0, 1, 1, 1, 0, 1, 1, 0, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 3, 1, 2, 2, 1, 2, 2, 2, 2, 0, 2, 2, 1, 3, 2, 3, 2, 1, 3, 2, 2, 3, 1, 2, 3, 2, 3, 1, 2, 2, 0, 3, 2, 2, 3, 2, 3, 3, 2, 4, 2, 2, 4, 1, 3, 3, 2, 4, 2, 3, 3, 1, 3, 3, 3, 4, 1, 3, 3, 1, 4, 2, 2, 2, 1, 3, 2, 2, 4, 2, 3, 4, 2, 4, 3, 3, 5, 1, 4, 4, 2
Offset: 0

Views

Author

N. Sato, May 24 2004

Keywords

Crossrefs

Cf. A000119.

Programs

  • Maple
    F:= combinat[fibonacci]:
    b:= proc(n, i, t) option remember; `if`(n=0, t, `if`(i<2, 0,
           b(n, i-1, t)+`if`(F(i)>n, 0, b(n-F(i), i-1, 1-t))))
        end:
    a:= proc(n) local j; for j from ilog[(1+sqrt(5))/2](n+1)
           while F(j+1)<=n do od; b(n, j, 0)
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Jul 11 2013
  • Mathematica
    Take[ CoefficientList[ Expand[ Product[1 + x^Fibonacci[k], {k, 2, 13}]/2 - Product[1 - x^Fibonacci[k], {k, 2, 13}]/2], x], 105] (* Robert G. Wilson v, May 29 2004 *)

Formula

G.f.: (Product_{k>=2} (1 + x^{F_k}) - Product_{k>=2} (1 - x^{F_k}))/2.

Extensions

Edited and extended by Robert G. Wilson v, May 29 2004