A093998 Number of partitions of n with an even number of distinct Fibonacci parts.
1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 2, 1, 2, 1, 2, 1, 0, 2, 2, 2, 2, 1, 2, 2, 1, 3, 1, 1, 2, 1, 2, 2, 2, 3, 1, 2, 3, 1, 3, 2, 2, 3, 1, 3, 2, 1, 3, 2, 2, 2, 1, 2, 2, 2, 4, 1, 3, 3, 1, 4, 3, 3, 3, 1, 3, 3, 2, 4, 2, 3, 3, 1, 4, 2, 2, 4, 2, 3, 3, 2, 3, 2, 2, 3, 0, 2, 3, 2, 4, 2, 4, 3, 1, 5, 3, 3, 4, 2, 4, 4, 3
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10946
- F. Ardila, The coefficients of a Fibonacci power series, Fib. Quart. 42 (3) (2004), 202-204.
- N. Robbins, Fibonacci partitions, Fib. Quart. 34 (4) (1996), 306-313.
- J. Shallit, Robbins and Ardila meet Berstel, Arxiv preprint arXiv:2007.14930 [math.CO], 2020.
Programs
-
Maple
F:= combinat[fibonacci]: b:= proc(n, i, t) option remember; `if`(n=0, t, `if`(i<2, 0, b(n, i-1, t)+`if`(F(i)>n, 0, b(n-F(i), i-1, 1-t)))) end: a:= proc(n) local j; for j from ilog[(1+sqrt(5))/2](n+1) while F(j+1)<=n do od; b(n, j, 1) end: seq(a(n), n=0..100); # Alois P. Heinz, Jul 11 2013
-
Mathematica
Take[ CoefficientList[ Expand[ Product[1 + x^Fibonacci[k], {k, 2, 13}]/2 + Product[1 - x^Fibonacci[k], {k, 2, 13}]/2], x], 105] (* Robert G. Wilson v, May 29 2004 *)
Formula
G.f.: (Product_{k>=2} (1 + x^{F_k}) + Product_{k>=2} (1 - x^{F_k}))/2.
Extensions
Edited and extended by Robert G. Wilson v, May 29 2004