cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094000 Number of n X n (0,1)-matrices with no zero rows or columns and with all rows distinct and all columns distinct, up to permutation of rows.

Original entry on oeis.org

1, 1, 3, 29, 1015, 126651, 53354350, 74698954306, 350688201987402, 5624061753186933530, 314512139441575825493524, 62498777166571927258267336860, 44831219113504221199415663547412096
Offset: 0

Views

Author

Goran Kilibarda and Vladeta Jovovic, May 30 2004

Keywords

Comments

Main diagonal of A059202.

References

  • G. Kilibarda and V. Jovovic, "Enumeration of some classes of T_0-hypergraphs", in

Crossrefs

Binary matrices with distinct rows and columns, various versions: A059202, A088309, A088310, A088616, A089673, A089674, A093466, A094000, A094223, A116532, A116539, A181230, A259763

Programs

  • Mathematica
    f[n_] := Sum[ StirlingS1[n + 1, k] Binomial[2^(k - 1) - 1, n], {k, 0, n + 1}]; Table[ f[n], {n, 0, 12}] (* Robert G. Wilson v, Jun 01 2004 *)
  • PARI
    a(n) = sum(k=0, n+1, stirling(n+1, k, 1)*binomial(2^(k-1)-1, n)); \\ Michel Marcus, Dec 17 2022

Formula

a(n) = Sum_{k=0..n+1} Stirling1(n+1, k)*binomial(2^(k-1)-1, n).
a(n) ~ binomial(2^n,n). - Vaclav Kotesovec, Mar 18 2014

Extensions

More terms from Robert G. Wilson v, Jun 01 2004