A094000 Number of n X n (0,1)-matrices with no zero rows or columns and with all rows distinct and all columns distinct, up to permutation of rows.
1, 1, 3, 29, 1015, 126651, 53354350, 74698954306, 350688201987402, 5624061753186933530, 314512139441575825493524, 62498777166571927258267336860, 44831219113504221199415663547412096
Offset: 0
References
- G. Kilibarda and V. Jovovic, "Enumeration of some classes of T_0-hypergraphs", in
Links
- G. C. Greubel, Table of n, a(n) for n = 0..59
- Goran Kilibarda and Vladeta Jovovic, Enumeration of some classes of T_0-hypergraphs, arXiv:1411.4187 [math.CO], 2014.
Crossrefs
Programs
-
Mathematica
f[n_] := Sum[ StirlingS1[n + 1, k] Binomial[2^(k - 1) - 1, n], {k, 0, n + 1}]; Table[ f[n], {n, 0, 12}] (* Robert G. Wilson v, Jun 01 2004 *)
-
PARI
a(n) = sum(k=0, n+1, stirling(n+1, k, 1)*binomial(2^(k-1)-1, n)); \\ Michel Marcus, Dec 17 2022
Formula
a(n) = Sum_{k=0..n+1} Stirling1(n+1, k)*binomial(2^(k-1)-1, n).
a(n) ~ binomial(2^n,n). - Vaclav Kotesovec, Mar 18 2014
Extensions
More terms from Robert G. Wilson v, Jun 01 2004
Comments