A094004 a(n) = (conjectured) length of longest string that can be generated by a starting string of 2's and 3's of length n, using the rule described in the Comments lines.
1, 4, 5, 8, 9, 14, 15, 66, 68, 70, 123, 124, 125, 132, 133, 134, 135, 136, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 200, 201, 202, 203, 204, 205, 206, 207, 209, 250, 251, 252, 253
Offset: 1
Examples
a(3) = 5, using the starting string 3,2,2, which extends to 3,2,2,2,3, of length 5. a(4) = 8, using the starting string 2,3,2,3, which extends to 2,3,2,3,2,2,2,3 of length 8. a(8) = 66: start = 23222323, end = 232223232223222322322232223232223222322322232223232223222322322332. a(22) = 142: start = 2322322323222323223223: see A116909 for trajectory.
Links
- F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, A Slow-Growing Sequence Defined by an Unusual Recurrence, J. Integer Sequences, Vol. 10 (2007), #07.1.2.
- F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, A Slow-Growing Sequence Defined by an Unusual Recurrence [pdf, ps].
- B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, On Curling Numbers of Integer Sequences, arXiv:1212.6102 [math.CO], Dec 25 2012.
- B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, On Curling Numbers of Integer Sequences, Journal of Integer Sequences, Vol. 16 (2013), Article 13.4.3.
- Benjamin Chaffin and N. J. A. Sloane, The Curling Number Conjecture, preprint.
- Index entries for sequences related to curling numbers
Extensions
a(27)-a(30) from Allan Wilks, Jul 29 2004
a(31)-a(36) from Benjamin Chaffin, Apr 09 2008
a(37)-a(44) (computed in 2008) from Benjamin Chaffin, Dec 04 2009
a(45)-a(48) from Benjamin Chaffin, Dec 18 2009
a(49)-a(50) from Benjamin Chaffin, Dec 26 2009
a(51)-a(52) from Benjamin Chaffin, Jan 10 2010
a(53)-a(80) from Benjamin Chaffin, Jan 10 2012
Comments