A094007 Numbers k such that the denominator of the k-th convergent of the continued fraction expansion of e is prime.
3, 5, 8, 14, 20, 35, 41, 65, 239, 269
Offset: 1
Examples
The convergents for e are 2, 3, 8/3, 11/4, 19/7, ... and so the 3rd convergent is the first one with prime denominator: a(1) = 3 and the 5th convergent is the 2nd one with prime denominator: a(2) = 5.
Links
- E. B. Burger, Diophantine Olympics and World Champions: Polynomials and Primes Down Under, Amer. Math. Monthly, 107 (Nov. 2000), 822-829.
- Jonathan Sondow, A geometric proof that e is irrational and a new measure of its irrationality, Amer. Math. Monthly 113 (2006) 637-641 (article), 114 (2007) 659 (addendum).
- Jonathan Sondow, A geometric proof that e is irrational and a new measure of its irrationality, arXiv:0704.1282 [math.HO], 2007-2010.
- Jonathan Sondow and K. Schalm, Which partial sums of the Taylor series for e are convergents to e? (and a link to the primes 2, 5, 13, 37, 463), II, Gems in Experimental Mathematics (T. Amdeberhan, L. A. Medina, and V. H. Moll, eds.), Contemporary Mathematics, vol. 517, Amer. Math. Soc., Providence, RI, 2010; arXiv:0709.0671 [math.NT], 2007-2009.
- Eric Weisstein's World of Mathematics, e
Programs
-
Mathematica
L = {}; cf = ContinuedFraction[E, 5000]; Do[ If[ PrimeQ[ Denominator[ FromContinuedFraction[ Take[ cf, n]] ]], AppendTo[L, n]], {n, Length[cf]}]; L (* Robert G. Wilson v, May 14 2004 *)
Extensions
More terms from Robert G. Wilson v, May 14 2004
Comments