cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A143382 Numerator of Sum_{k=0..n} 1/k!!.

Original entry on oeis.org

1, 2, 5, 17, 71, 121, 731, 1711, 41099, 370019, 740101, 2713789, 1206137, 423355111, 846710651, 1814380259, 203210595443, 12654139763, 531473870981, 43758015399281, 525096184837561, 441080795274037, 22054039763790029
Offset: 0

Views

Author

Jonathan Vos Post, Aug 11 2008

Keywords

Comments

Denominators are A143383. A143382(n)/A143383(n) is to A007676(n)/A007676(n) as double factorials are to factorials. A143382/A143383 fractions begin:
n numerator/denominator
0 1/0!! = 1/1
1 1/0!! + 1/1!! = 2/1
2 1/0!! + 1/1!! + 1/2!! = 5/2
3 1/0!! + 1/1!! + 1/2!! + 1/3!! = 17/6
4 1/0!! + 1/1!! + 1/2!! + 1/3!! + 1/4!! = 71/24
5 1/0!! + 1/1!! + 1/2!! + 1/3!! + 1/4!! + 1/5!! = 121/40
6 1/0!! + 1/1!! + 1/2!! + 1/3!! + 1/4!! + 1/5!! + 1/6!! = 731/240
The series converges to sqrt(e) + sqrt((e*Pi)/2)*erf(1/sqrt(2)) = 3.0594074053425761445... whose decimal expansion is given by A143280. The analogs of A094007 and A094008 are determined by 2 being the only prime denominator in the convergents to the sum of reciprocals of double factorials and prime numerators beginning: a(1) = 2, a(2) = 5, a(3) = 17, a(4) = 71, a(15) = 1814380259, a(19) = 43758015399281, a(21) = 441080795274037, a(23) = 867081905243923.

Examples

			a(3) = 17 because 1/0!! + 1/1!! + 1/2!! + 1/3!! = 17/6.
a(15) = 1814380259 because 1814380259/593049600 = 1/1 + 1/1 + 1/2 + 1/3 + 1/8 + 1/15 + 1/48 + 1/105 + 1/384 + 1/945 + 1/3840 + 1/10395 + 1/46080 + 1/135135 + 1/645120 + 1/2027025.
		

Crossrefs

Cf. A006882 (n!!), A094007, A143280 (m(2)), A143383 (denominators).

Programs

  • Magma
    [n le 0 select 1 else Numerator( 1 + (&+[ 1/(0 + (&*[k-2*j: j in [0..Floor((k-1)/2)]])) : k in [1..n]]) ): n in [0..25]]; // G. C. Greubel, Mar 28 2019
    
  • Mathematica
    Table[Numerator[Sum[1/k!!, {k, 0, n}]], {n, 0, 30}] (* G. C. Greubel, Mar 28 2019 *)
    Accumulate[1/Range[0,30]!!]//Numerator (* Harvey P. Dale, May 19 2023 *)
  • PARI
    vector(25, n, n--; numerator(sum(k=0,n, 1/prod(j=0,floor((k-1)/2), (k - 2*j)) ))) \\ G. C. Greubel, Mar 28 2019
    
  • Sage
    [numerator(sum( 1/product((k - 2*j) for j in (0..floor((k-1)/2)))   for k in (0..n))) for n in (0..25)] # G. C. Greubel, Mar 28 2019

Formula

Numerators of Sum_{k=0..n} 1/k!! = Sum_{k=0..n} 1/A006882(k).

A143383 Denominator of Sum_{k=0..n} 1/k!!.

Original entry on oeis.org

1, 1, 2, 6, 24, 40, 240, 560, 13440, 120960, 241920, 887040, 394240, 138378240, 276756480, 593049600, 66421555200, 4136140800, 173717913600, 14302774886400, 171633298636800, 144171970854912, 7208598542745600, 283414985441280
Offset: 0

Views

Author

Jonathan Vos Post, Aug 11 2008

Keywords

Comments

Numerators are A143382. A143382(n)/A143383(n) is to A007676(n)/A007676(n) as double factorials are to factorials. A143382/A143383 fractions begin:
n numerator/denominator
0 1/0!! = 1/1
1 1/0!! + 1/1!! = 2/1
2 1/0!! + 1/1!! + 1/2!! = 5/2
3 1/0!! + 1/1!! + 1/2!! + 1/3!! = 17/6
4 1/0!! + 1/1!! + 1/2!! + 1/3!! + 1/4!! = 71/24
5 1/0!! + 1/1!! + 1/2!! + 1/3!! + 1/4!! + 1/5!! = 121/40
6 1/0!! + 1/1!! + 1/2!! + 1/3!! + 1/4!! + 1/5!! + 1/6!! = 731/240
The series converges to sqrt(e) + sqrt((e*Pi)/2)*erf(1/sqrt(2)) = 3.0594074053425761445... whose decimal expansion is given by A143280. The analogs of A094007 and A094008 are determined by 2 being the only prime denominator in the convergents to the sum of reciprocals of double factorials and prime numerators beginning: a(1) = 2, a(2) = 5, a(3) = 17, a(4) = 71, a(15) = 1814380259, a(19) = 43758015399281, a(21) = 441080795274037, a(23) = 867081905243923.

Examples

			a(3) = 6 because 1/0!! + 1/1!! + 1/2!! + 1/3!! = 17/6.
a(15) = 593049600 because 1814380259/593049600 = 1/1 + 1/1 + 1/2 + 1/3 + 1/8 + 1/15 + 1/48 + 1/105 + 1/384 + 1/945 + 1/3840 + 1/10395 + 1/46080 + 1/135135 + 1/645120 + 1/2027025.
		

Crossrefs

Cf. A006882 (n!!), A094007, A143280 (m(2)), A143382 (numerator).

Programs

  • Magma
    [n le 0 select 1 else Denominator( 1 + (&+[ 1/(0 + (&*[k-2*j: j in [0..Floor((k-1)/2)]])) : k in [1..n]]) ): n in [0..25]]; // G. C. Greubel, Mar 28 2019
    
  • Mathematica
    Table[Denominator[Sum[1/k!!, {k,0,n}]], {n,0,25}] (* G. C. Greubel, Mar 28 2019 *)
  • PARI
    vector(25, n, n--; denominator(sum(k=0,n, 1/prod(j=0,floor((k-1)/2), (k - 2*j)) ))) \\ G. C. Greubel, Mar 28 2019
    
  • Sage
    [denominator(sum(1/product((k-2*j) for j in (0..floor((k-1)/2))) for k in (0..n))) for n in (0..25)] # G. C. Greubel, Mar 28 2019

Formula

Denominators of Sum_{k=0..n} 1/k!! = Sum_{k=0..n} 1/A006882(k).

A094008 Primes which are the denominators of convergents of the continued fraction expansion of e.

Original entry on oeis.org

3, 7, 71, 18089, 10391023, 781379079653017, 2111421691000680031, 1430286763442005122380663256416207
Offset: 1

Views

Author

Jonathan Sondow, Apr 20 2004

Keywords

Comments

The position of a(n) in A000040 (the prime numbers) is A102049(n) = A000720(a(n)). - Jonathan Sondow, Dec 27 2004
The next term has 166 digits. [Harvey P. Dale, Aug 23 2011]

Examples

			a(1) = 3 because 3 is the first prime denominator of a convergent, 8/3, of the simple continued fraction for e
		

Crossrefs

Programs

  • Mathematica
    Block[{$MaxExtraPrecision=1000},Select[Denominator[Convergents[E,500]], PrimeQ]] (* Harvey P. Dale, Aug 23 2011 *)
  • PARI
    default(realprecision,10^5);
    cf=contfrac(exp(1));
    n=0;
    { for(k=1, #cf,  \\ generate b-file
        pq = contfracpnqn( vector(k,j, cf[j]) );
        p = pq[1,1];  q = pq[2,1];
    \\    if ( ispseudoprime(p), n+=1; print(n," ",p) );  \\ A086791
        if ( ispseudoprime(q), n+=1; print(n," ",q) );  \\ A094008
    ); }
    /* Joerg Arndt, Apr 21 2013 */

Formula

a(n) = A007677(A094007(n)) = A000040(A102049(n)).

A102049 Indices of primes which are denominators of convergents to e.

Original entry on oeis.org

2, 4, 20, 2073, 688812, 23493068282804, 51287550456151700
Offset: 1

Views

Author

Jonathan Sondow, Dec 27 2004

Keywords

Comments

The prime denominators of convergents to e form A094008 (so A000040(a(n)) = A094008(n)). Their positions in A007677 (denominators of convergents to e) form A094007, so a(n) = A000720(A007677(A094007(n))).
a(6)-a(7) computed using Kim Walisch's primecount program. - Giovanni Resta, Jun 03 2019

Examples

			a(1) = 2 because the first convergent to e with prime denominator is 8/3 and the index of 3 is 2, i.e., 3 is the 2nd prime.
		

Crossrefs

Formula

a(n) = A000720(A094008(n)).

Extensions

a(6)-a(7) from Giovanni Resta, Jun 03 2019

A259490 Numbers k such that the denominator of the n-th convergent of the continued fraction expansion of Pi is prime.

Original entry on oeis.org

2, 4, 9, 33, 595, 1127, 2003, 3611, 4356, 6926
Offset: 1

Views

Author

Keywords

Comments

These are the k such that A002486(k+1) is prime. - Michel Marcus, Jul 15 2015
a(11) > 25000.

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 25000; lst = {}; cf = ContinuedFraction[Pi, 10000]; Do[ If[ PrimeQ[ Denominator[ FromContinuedFraction[ Take[ cf, n]] ]], AppendTo[lst, n]], {n, Length[cf]}]; lst
    Position[Convergents[Pi,7000],?(PrimeQ[Denominator[#]]&)]//Flatten (* _Harvey P. Dale, Aug 12 2021 *)
Showing 1-5 of 5 results.