A143382
Numerator of Sum_{k=0..n} 1/k!!.
Original entry on oeis.org
1, 2, 5, 17, 71, 121, 731, 1711, 41099, 370019, 740101, 2713789, 1206137, 423355111, 846710651, 1814380259, 203210595443, 12654139763, 531473870981, 43758015399281, 525096184837561, 441080795274037, 22054039763790029
Offset: 0
a(3) = 17 because 1/0!! + 1/1!! + 1/2!! + 1/3!! = 17/6.
a(15) = 1814380259 because 1814380259/593049600 = 1/1 + 1/1 + 1/2 + 1/3 + 1/8 + 1/15 + 1/48 + 1/105 + 1/384 + 1/945 + 1/3840 + 1/10395 + 1/46080 + 1/135135 + 1/645120 + 1/2027025.
-
[n le 0 select 1 else Numerator( 1 + (&+[ 1/(0 + (&*[k-2*j: j in [0..Floor((k-1)/2)]])) : k in [1..n]]) ): n in [0..25]]; // G. C. Greubel, Mar 28 2019
-
Table[Numerator[Sum[1/k!!, {k, 0, n}]], {n, 0, 30}] (* G. C. Greubel, Mar 28 2019 *)
Accumulate[1/Range[0,30]!!]//Numerator (* Harvey P. Dale, May 19 2023 *)
-
vector(25, n, n--; numerator(sum(k=0,n, 1/prod(j=0,floor((k-1)/2), (k - 2*j)) ))) \\ G. C. Greubel, Mar 28 2019
-
[numerator(sum( 1/product((k - 2*j) for j in (0..floor((k-1)/2))) for k in (0..n))) for n in (0..25)] # G. C. Greubel, Mar 28 2019
A143383
Denominator of Sum_{k=0..n} 1/k!!.
Original entry on oeis.org
1, 1, 2, 6, 24, 40, 240, 560, 13440, 120960, 241920, 887040, 394240, 138378240, 276756480, 593049600, 66421555200, 4136140800, 173717913600, 14302774886400, 171633298636800, 144171970854912, 7208598542745600, 283414985441280
Offset: 0
a(3) = 6 because 1/0!! + 1/1!! + 1/2!! + 1/3!! = 17/6.
a(15) = 593049600 because 1814380259/593049600 = 1/1 + 1/1 + 1/2 + 1/3 + 1/8 + 1/15 + 1/48 + 1/105 + 1/384 + 1/945 + 1/3840 + 1/10395 + 1/46080 + 1/135135 + 1/645120 + 1/2027025.
-
[n le 0 select 1 else Denominator( 1 + (&+[ 1/(0 + (&*[k-2*j: j in [0..Floor((k-1)/2)]])) : k in [1..n]]) ): n in [0..25]]; // G. C. Greubel, Mar 28 2019
-
Table[Denominator[Sum[1/k!!, {k,0,n}]], {n,0,25}] (* G. C. Greubel, Mar 28 2019 *)
-
vector(25, n, n--; denominator(sum(k=0,n, 1/prod(j=0,floor((k-1)/2), (k - 2*j)) ))) \\ G. C. Greubel, Mar 28 2019
-
[denominator(sum(1/product((k-2*j) for j in (0..floor((k-1)/2))) for k in (0..n))) for n in (0..25)] # G. C. Greubel, Mar 28 2019
A094008
Primes which are the denominators of convergents of the continued fraction expansion of e.
Original entry on oeis.org
3, 7, 71, 18089, 10391023, 781379079653017, 2111421691000680031, 1430286763442005122380663256416207
Offset: 1
a(1) = 3 because 3 is the first prime denominator of a convergent, 8/3, of the simple continued fraction for e
- Joerg Arndt, Table of n, a(n) for n = 1..10
- E. B. Burger, Diophantine Olympics and World Champions: Polynomials and Primes Down Under, Amer. Math. Monthly, 107 (Nov. 2000), 822-829.
- J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, Amer. Math. Monthly 113 (2006) 637-641 (article), 114 (2007) 659 (addendum).
- J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, arXiv:0704.1282 [math.HO], 2007-2010.
- J. Sondow and K. Schalm, Which partial sums of the Taylor series for e are convergents to e? (and a link to the primes 2, 5, 13, 37, 463), II, Gems in Experimental Mathematics (T. Amdeberhan, L. A. Medina, and V. H. Moll, eds.), Contemporary Mathematics, vol. 517, Amer. Math. Soc., Providence, RI, 2010; arXiv:0709.0671 [math.NT], 2007-2009.
- Eric Weisstein's World of Mathematics, e.
-
Block[{$MaxExtraPrecision=1000},Select[Denominator[Convergents[E,500]], PrimeQ]] (* Harvey P. Dale, Aug 23 2011 *)
-
default(realprecision,10^5);
cf=contfrac(exp(1));
n=0;
{ for(k=1, #cf, \\ generate b-file
pq = contfracpnqn( vector(k,j, cf[j]) );
p = pq[1,1]; q = pq[2,1];
\\ if ( ispseudoprime(p), n+=1; print(n," ",p) ); \\ A086791
if ( ispseudoprime(q), n+=1; print(n," ",q) ); \\ A094008
); }
/* Joerg Arndt, Apr 21 2013 */
A102049
Indices of primes which are denominators of convergents to e.
Original entry on oeis.org
2, 4, 20, 2073, 688812, 23493068282804, 51287550456151700
Offset: 1
a(1) = 2 because the first convergent to e with prime denominator is 8/3 and the index of 3 is 2, i.e., 3 is the 2nd prime.
- E. B. Burger, Diophantine Olympics and World Champions: Polynomials and Primes Down Under, Amer. Math. Monthly, 107 (Nov. 2000), 822-829.
- J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, Amer. Math. Monthly 113 (2006) 637-641 (article), 114 (2007) 659 (addendum).
- J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, arXiv:0704.1282 [math.HO], 2007-2010.
- J. Sondow and K. Schalm, Which partial sums of the Taylor series for e are convergents to e? (and a link to the primes 2, 5, 13, 37, 463), II, Gems in Experimental Mathematics (T. Amdeberhan, L. A. Medina, and V. H. Moll, eds.), Contemporary Mathematics, vol. 517, Amer. Math. Soc., Providence, RI, 2010; arXiv:0709.0671 [math.NT], 2007-2009.
- Eric Weisstein's World of Mathematics, e.
A259490
Numbers k such that the denominator of the n-th convergent of the continued fraction expansion of Pi is prime.
Original entry on oeis.org
2, 4, 9, 33, 595, 1127, 2003, 3611, 4356, 6926
Offset: 1
-
$MaxExtraPrecision = 25000; lst = {}; cf = ContinuedFraction[Pi, 10000]; Do[ If[ PrimeQ[ Denominator[ FromContinuedFraction[ Take[ cf, n]] ]], AppendTo[lst, n]], {n, Length[cf]}]; lst
Position[Convergents[Pi,7000],?(PrimeQ[Denominator[#]]&)]//Flatten (* _Harvey P. Dale, Aug 12 2021 *)
Showing 1-5 of 5 results.
Comments