A143382
Numerator of Sum_{k=0..n} 1/k!!.
Original entry on oeis.org
1, 2, 5, 17, 71, 121, 731, 1711, 41099, 370019, 740101, 2713789, 1206137, 423355111, 846710651, 1814380259, 203210595443, 12654139763, 531473870981, 43758015399281, 525096184837561, 441080795274037, 22054039763790029
Offset: 0
a(3) = 17 because 1/0!! + 1/1!! + 1/2!! + 1/3!! = 17/6.
a(15) = 1814380259 because 1814380259/593049600 = 1/1 + 1/1 + 1/2 + 1/3 + 1/8 + 1/15 + 1/48 + 1/105 + 1/384 + 1/945 + 1/3840 + 1/10395 + 1/46080 + 1/135135 + 1/645120 + 1/2027025.
-
[n le 0 select 1 else Numerator( 1 + (&+[ 1/(0 + (&*[k-2*j: j in [0..Floor((k-1)/2)]])) : k in [1..n]]) ): n in [0..25]]; // G. C. Greubel, Mar 28 2019
-
Table[Numerator[Sum[1/k!!, {k, 0, n}]], {n, 0, 30}] (* G. C. Greubel, Mar 28 2019 *)
Accumulate[1/Range[0,30]!!]//Numerator (* Harvey P. Dale, May 19 2023 *)
-
vector(25, n, n--; numerator(sum(k=0,n, 1/prod(j=0,floor((k-1)/2), (k - 2*j)) ))) \\ G. C. Greubel, Mar 28 2019
-
[numerator(sum( 1/product((k - 2*j) for j in (0..floor((k-1)/2))) for k in (0..n))) for n in (0..25)] # G. C. Greubel, Mar 28 2019
A143383
Denominator of Sum_{k=0..n} 1/k!!.
Original entry on oeis.org
1, 1, 2, 6, 24, 40, 240, 560, 13440, 120960, 241920, 887040, 394240, 138378240, 276756480, 593049600, 66421555200, 4136140800, 173717913600, 14302774886400, 171633298636800, 144171970854912, 7208598542745600, 283414985441280
Offset: 0
a(3) = 6 because 1/0!! + 1/1!! + 1/2!! + 1/3!! = 17/6.
a(15) = 593049600 because 1814380259/593049600 = 1/1 + 1/1 + 1/2 + 1/3 + 1/8 + 1/15 + 1/48 + 1/105 + 1/384 + 1/945 + 1/3840 + 1/10395 + 1/46080 + 1/135135 + 1/645120 + 1/2027025.
-
[n le 0 select 1 else Denominator( 1 + (&+[ 1/(0 + (&*[k-2*j: j in [0..Floor((k-1)/2)]])) : k in [1..n]]) ): n in [0..25]]; // G. C. Greubel, Mar 28 2019
-
Table[Denominator[Sum[1/k!!, {k,0,n}]], {n,0,25}] (* G. C. Greubel, Mar 28 2019 *)
-
vector(25, n, n--; denominator(sum(k=0,n, 1/prod(j=0,floor((k-1)/2), (k - 2*j)) ))) \\ G. C. Greubel, Mar 28 2019
-
[denominator(sum(1/product((k-2*j) for j in (0..floor((k-1)/2))) for k in (0..n))) for n in (0..25)] # G. C. Greubel, Mar 28 2019
A094007
Numbers k such that the denominator of the k-th convergent of the continued fraction expansion of e is prime.
Original entry on oeis.org
3, 5, 8, 14, 20, 35, 41, 65, 239, 269
Offset: 1
The convergents for e are 2, 3, 8/3, 11/4, 19/7, ... and so the 3rd convergent is the first one with prime denominator: a(1) = 3 and the 5th convergent is the 2nd one with prime denominator: a(2) = 5.
- E. B. Burger, Diophantine Olympics and World Champions: Polynomials and Primes Down Under, Amer. Math. Monthly, 107 (Nov. 2000), 822-829.
- Jonathan Sondow, A geometric proof that e is irrational and a new measure of its irrationality, Amer. Math. Monthly 113 (2006) 637-641 (article), 114 (2007) 659 (addendum).
- Jonathan Sondow, A geometric proof that e is irrational and a new measure of its irrationality, arXiv:0704.1282 [math.HO], 2007-2010.
- Jonathan Sondow and K. Schalm, Which partial sums of the Taylor series for e are convergents to e? (and a link to the primes 2, 5, 13, 37, 463), II, Gems in Experimental Mathematics (T. Amdeberhan, L. A. Medina, and V. H. Moll, eds.), Contemporary Mathematics, vol. 517, Amer. Math. Soc., Providence, RI, 2010; arXiv:0709.0671 [math.NT], 2007-2009.
- Eric Weisstein's World of Mathematics, e
-
L = {}; cf = ContinuedFraction[E, 5000]; Do[ If[ PrimeQ[ Denominator[ FromContinuedFraction[ Take[ cf, n]] ]], AppendTo[L, n]], {n, Length[cf]}]; L (* Robert G. Wilson v, May 14 2004 *)
A086791
Primes found among the numerators of the continued fraction rational approximations to e.
Original entry on oeis.org
2, 3, 11, 19, 193, 49171, 1084483, 563501581931, 332993721039856822081, 3883282200001578119609988529770479452142437123001916048102414513139044082579
Offset: 1
The first 8 rational approximations to e are 2/1, 3/1, 8/3, 11/4, 19/7, 87/32, 106/39, 193/71. The numerators 2, 3, 11, 19, 193 are primes.
-
\\ Continued fraction rational approximation of numeric constants f. m=steps.
cfracnumprime(m,f) = { default(realprecision,3000); cf = vector(m+10); x=f; for(n=0,m, i=floor(x); x=1/(x-i); cf[n+1] = i; ); for(m1=0,m, r=cf[m1+1]; forstep(n=m1,1,-1, r = 1/r; r+=cf[n]; ); numer=numerator(r); denom=denominator(r); if(ispseudoprime(numer),print1(numer,",")); ) }
-
default(realprecision,10^5);
cf=contfrac(exp(1));
n=0;
{ for(k=1, #cf, \\ generate b-file
pq = contfracpnqn( vector(k,j, cf[j]) );
p = pq[1,1]; q = pq[2,1];
if ( ispseudoprime(p), n+=1; print(n," ",p) ); \\ A086791
\\ if ( ispseudoprime(q), n+=1; print(n," ",q) ); \\ A094008
); }
/* Joerg Arndt, Apr 21 2013 */
A102049
Indices of primes which are denominators of convergents to e.
Original entry on oeis.org
2, 4, 20, 2073, 688812, 23493068282804, 51287550456151700
Offset: 1
a(1) = 2 because the first convergent to e with prime denominator is 8/3 and the index of 3 is 2, i.e., 3 is the 2nd prime.
- E. B. Burger, Diophantine Olympics and World Champions: Polynomials and Primes Down Under, Amer. Math. Monthly, 107 (Nov. 2000), 822-829.
- J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, Amer. Math. Monthly 113 (2006) 637-641 (article), 114 (2007) 659 (addendum).
- J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, arXiv:0704.1282 [math.HO], 2007-2010.
- J. Sondow and K. Schalm, Which partial sums of the Taylor series for e are convergents to e? (and a link to the primes 2, 5, 13, 37, 463), II, Gems in Experimental Mathematics (T. Amdeberhan, L. A. Medina, and V. H. Moll, eds.), Contemporary Mathematics, vol. 517, Amer. Math. Soc., Providence, RI, 2010; arXiv:0709.0671 [math.NT], 2007-2009.
- Eric Weisstein's World of Mathematics, e.
Showing 1-5 of 5 results.
Comments