A143382
Numerator of Sum_{k=0..n} 1/k!!.
Original entry on oeis.org
1, 2, 5, 17, 71, 121, 731, 1711, 41099, 370019, 740101, 2713789, 1206137, 423355111, 846710651, 1814380259, 203210595443, 12654139763, 531473870981, 43758015399281, 525096184837561, 441080795274037, 22054039763790029
Offset: 0
a(3) = 17 because 1/0!! + 1/1!! + 1/2!! + 1/3!! = 17/6.
a(15) = 1814380259 because 1814380259/593049600 = 1/1 + 1/1 + 1/2 + 1/3 + 1/8 + 1/15 + 1/48 + 1/105 + 1/384 + 1/945 + 1/3840 + 1/10395 + 1/46080 + 1/135135 + 1/645120 + 1/2027025.
-
[n le 0 select 1 else Numerator( 1 + (&+[ 1/(0 + (&*[k-2*j: j in [0..Floor((k-1)/2)]])) : k in [1..n]]) ): n in [0..25]]; // G. C. Greubel, Mar 28 2019
-
Table[Numerator[Sum[1/k!!, {k, 0, n}]], {n, 0, 30}] (* G. C. Greubel, Mar 28 2019 *)
Accumulate[1/Range[0,30]!!]//Numerator (* Harvey P. Dale, May 19 2023 *)
-
vector(25, n, n--; numerator(sum(k=0,n, 1/prod(j=0,floor((k-1)/2), (k - 2*j)) ))) \\ G. C. Greubel, Mar 28 2019
-
[numerator(sum( 1/product((k - 2*j) for j in (0..floor((k-1)/2))) for k in (0..n))) for n in (0..25)] # G. C. Greubel, Mar 28 2019
A354331
a(n) is the denominator of Sum_{k=0..n} 1 / (2*k+1)!.
Original entry on oeis.org
1, 6, 40, 5040, 362880, 13305600, 6227020800, 1307674368000, 513257472000, 121645100408832000, 51090942171709440000, 8617338912961658880000, 15511210043330985984000000, 10888869450418352160768000000, 2947253997913233984847872000000, 1174691236311131831103651840000000
Offset: 0
1, 7/6, 47/40, 5923/5040, 426457/362880, 15636757/13305600, 7318002277/6227020800, ...
-
Table[Sum[1/(2 k + 1)!, {k, 0, n}], {n, 0, 15}] // Denominator
nmax = 15; CoefficientList[Series[Sinh[Sqrt[x]]/(Sqrt[x] (1 - x)), {x, 0, nmax}], x] // Denominator
-
a(n) = denominator(sum(k=0, n, 1/(2*k+1)!)); \\ Michel Marcus, May 24 2022
-
from fractions import Fraction
from math import factorial
def A354331(n): return sum(Fraction(1,factorial(2*k+1)) for k in range(n+1)).denominator # Chai Wah Wu, May 24 2022
A354333
a(n) is the denominator of Sum_{k=0..n} (-1)^k / (2*k+1)!.
Original entry on oeis.org
1, 6, 120, 5040, 362880, 39916800, 249080832, 1307674368000, 27360571392000, 121645100408832000, 51090942171709440000, 5170403347776995328000, 15511210043330985984000000, 10888869450418352160768000000, 8841761993739701954543616000000, 432780981798838043038187520000000
Offset: 0
1, 5/6, 101/120, 4241/5040, 305353/362880, 33588829/39916800, 209594293/249080832, ...
-
Table[Sum[(-1)^k/(2 k + 1)!, {k, 0, n}], {n, 0, 15}] // Denominator
nmax = 15; CoefficientList[Series[Sin[Sqrt[x]]/(Sqrt[x] (1 - x)), {x, 0, nmax}], x] // Denominator
-
a(n) = denominator(sum(k=0, n, (-1)^k/(2*k+1)!)); \\ Michel Marcus, May 24 2022
-
from fractions import Fraction
from math import factorial
def A354333(n): return sum(Fraction(-1 if k % 2 else 1,factorial(2*k+1)) for k in range(n+1)).denominator # Chai Wah Wu, May 24 2022
A354335
a(n) is the denominator of Sum_{k=0..n} 1 / (2*k)!.
Original entry on oeis.org
1, 2, 24, 720, 4480, 518400, 479001600, 29059430400, 20922789888000, 6402373705728000, 810967336058880000, 1124000727777607680000, 88635485961891348480000, 14936720782466875392000000, 27717122237428532772864000000, 265252859812191058636308480000000
Offset: 0
1, 3/2, 37/24, 1111/720, 6913/4480, 799933/518400, 739138093/479001600, ...
-
Table[Sum[1/(2 k)!, {k, 0, n}], {n, 0, 15}] // Denominator
nmax = 15; CoefficientList[Series[Cosh[Sqrt[x]]/(1 - x), {x, 0, nmax}], x] // Denominator
-
a(n) = denominator(sum(k=0, n, 1/(2*k)!)); \\ Michel Marcus, May 24 2022
-
from fractions import Fraction
from math import factorial
def A354335(n): return sum(Fraction(1,factorial(2*k)) for k in range(n+1)).denominator # Chai Wah Wu, May 24 2022
A354299
a(n) is the denominator of Sum_{k=1..n} (-1)^(k+1) / (2*k-1)!!.
Original entry on oeis.org
1, 3, 15, 105, 189, 10395, 135135, 2027025, 34459425, 130945815, 13749310575, 316234143225, 7905853580625, 12556355686875, 1238056670725875, 776918153694375, 6332659870762850625, 7642865361265509375, 8200794532637891559375, 63966197354575554163125, 13113070457687988603440625
Offset: 1
1, 2/3, 11/15, 76/105, 137/189, 7534/10395, 97943/135135, 1469144/2027025, 24975449/34459425, ...
-
S:= 0: R:= NULL:
for n from 1 to 100 do
S:= S + (-1)^(n+1)/doublefactorial(2*n-1);
R:= R, denom(S);
od:
R; # Robert Israel, Jan 10 2024
-
Table[Sum[(-1)^(k + 1)/(2 k - 1)!!, {k, 1, n}], {n, 1, 21}] // Denominator
nmax = 21; CoefficientList[Series[Sqrt[Pi x Exp[-x]/2] Erfi[Sqrt[x/2]]/(1 - x), {x, 0, nmax}], x] // Denominator // Rest
Table[1/(1 + ContinuedFractionK[2 k - 1, 2 k, {k, 1, n - 1}]), {n, 1, 21}] // Denominator
A354303
a(n) is the denominator of Sum_{k=0..n} 1 / (k!)^2.
Original entry on oeis.org
1, 1, 4, 18, 576, 2400, 518400, 12700800, 541900800, 65840947200, 13168189440000, 88519495680000, 229442532802560000, 19387894021816320000, 2533351485517332480000, 855006126362099712000000, 437763136697395052544000000, 1621968544942912438272000000
Offset: 0
1, 2, 9/4, 41/18, 1313/576, 5471/2400, 1181737/518400, 28952557/12700800, 1235309099/541900800, ...
-
Table[Sum[1/(k!)^2, {k, 0, n}], {n, 0, 17}] // Denominator
nmax = 17; CoefficientList[Series[BesselI[0, 2 Sqrt[x]]/(1 - x), {x, 0, nmax}], x] // Denominator
A354305
a(n) is the denominator of Sum_{k=0..n} (-1)^k / (k!)^2.
Original entry on oeis.org
1, 1, 4, 9, 192, 1800, 103680, 529200, 232243200, 8230118400, 1463132160000, 39833773056000, 20858412072960000, 1615657835151360000, 584619573580922880000, 1908495817772544000000, 29184209113159670169600000, 3953548328298349068288000000, 185476873609942457647104000000
Offset: 0
1, 0, 1/4, 2/9, 43/192, 403/1800, 23213/103680, 118483/529200, 51997111/232243200, 1842647621/8230118400, ...
-
Table[Sum[(-1)^k/(k!)^2, {k, 0, n}], {n, 0, 18}] // Denominator
nmax = 18; CoefficientList[Series[BesselJ[0, 2 Sqrt[x]]/(1 - x), {x, 0, nmax}], x] // Denominator
Accumulate[Table[(-1)^k/(k!)^2,{k,0,20}]]//Denominator (* Harvey P. Dale, Apr 25 2023 *)
A354378
a(n) is the denominator of Sum_{k=0..n} (-1)^k / (2*k)!.
Original entry on oeis.org
1, 2, 24, 720, 8064, 3628800, 479001600, 87178291200, 20922789888000, 1280474741145600, 2432902008176640000, 1124000727777607680000, 620448401733239439360000, 403291461126605635584000000, 60977668922342772100300800000, 1569543549184562477137920000000
Offset: 0
1, 1/2, 13/24, 389/720, 4357/8064, 1960649/3628800, 258805669/479001600, ...
-
Table[Sum[(-1)^k/(2 k)!, {k, 0, n}], {n, 0, 15}] // Denominator
nmax = 15; CoefficientList[Series[Cos[Sqrt[x]]/(1 - x), {x, 0, nmax}], x] // Denominator
-
a(n) = denominator(sum(k=0, n, (-1)^k/(2*k)!)); \\ Michel Marcus, May 24 2022
Showing 1-8 of 8 results.
Comments