cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094053 Triangle read by rows: T(n,k) = k*(n-k), 1 <= k <= n.

Original entry on oeis.org

0, 1, 0, 2, 2, 0, 3, 4, 3, 0, 4, 6, 6, 4, 0, 5, 8, 9, 8, 5, 0, 6, 10, 12, 12, 10, 6, 0, 7, 12, 15, 16, 15, 12, 7, 0, 8, 14, 18, 20, 20, 18, 14, 8, 0, 9, 16, 21, 24, 25, 24, 21, 16, 9, 0, 10, 18, 24, 28, 30, 30, 28, 24, 18, 10, 0, 11, 20, 27, 32, 35, 36, 35, 32, 27, 20, 11, 0, 12
Offset: 1

Views

Author

Reinhard Zumkeller, May 31 2004

Keywords

Comments

T(n,k) = A003991(n-1,k) for 1 <= k < n;
T(n,k) = T(n,n-1-k) for k < n;
T(n,1) = n-1; T(n,n) = 0; T(n,2) = A005843(n-2) for n > 1;
T(n,3) = A008585(n-3) for n>2; T(n,4) = A008586(n-4) for n > 3;
T(n,5) = A008587(n-5) for n>4; T(n,6) = A008588(n-6) for n > 5;
T(n,7) = A008589(n-7) for n>6; T(n,8) = A008590(n-8) for n > 7;
T(n,9) = A008591(n-9) for n>8; T(n,10) = A008592(n-10) for n > 9;
T(n,11) = A008593(n-11) for n>10; T(n,12) = A008594(n-12) for n > 11;
T(n,13) = A008595(n-13) for n>12; T(n,14) = A008596(n-14) for n > 13;
T(n,15) = A008597(n-15) for n>14; T(n,16) = A008598(n-16) for n > 15;
T(n,17) = A008599(n-17) for n>16; T(n,18) = A008600(n-18) for n > 17;
T(n,19) = A008601(n-19) for n>18; T(n,20) = A008602(n-20) for n > 19;
Row sums give A000292; triangle sums give A000332;
All numbers m > 0 occur A000005(m) times;
A002378(n) = T(A005408(n),n+1) = n*(n+1).
k-th columns are arithmetic progressions with step k, starting with 0. If a zero is prefixed to the sequence, then we get a new table where the columns are again arithmetic progressions with step k, but starting with k, k=0,1,2,...: 1st column = (0,0,0,...), 2nd column = (1,2,3,...), 3rd column = (2,4,6,8,...), etc. - M. F. Hasler, Feb 02 2013
Construct the infinite-dimensional matrix representation of angular momentum operators (J_1,J_2,J_3) in the Jordan-Schwinger form (cf. Harter, Klee, Schwinger). The triangle terms T(n,k) = T(2j,j+m) satisfy: (1/2)T(2j,j+m)^(1/2) = = = i = -i . Matrices for J_1 and J_2 are sparse. These equalities determine the only nonzero entries. - Bradley Klee, Jan 29 2016
T(n+1,k+1) is the number of degrees of freedom of a k-dimensional affine subspace within an n-dimensional vector space. This is most readily interpreted geometrically: e.g. in 3 dimensions a line (1-dimensional subspace) has T(4,2) = 4 degrees of freedom and a plane has T(4,3) = 3. T(n+1,1) = n indicates that points in n dimensions have n degrees of freedom. T(n,n) = 0 for any n as all n-dimensional spaces in an n-dimensional space are equivalent. - Daniel Leary, Apr 29 2020

Examples

			From _M. F. Hasler_, Feb 02 2013: (Start)
Triangle begins:
  0;
  1, 0;
  2, 2, 0;
  3, 4, 3, 0;
  4, 6, 6, 4, 0;
  5, 8, 9, 8, 5, 0;
  (...)
If an additional 0 was added at the beginning, this would become:
  0;
  0, 1;
  0, 2, 2;
  0, 3, 4; 3;
  0, 4, 6, 6, 4;
  0, 5, 8, 9, 8, 5;
  ... (End)
		

Crossrefs

J_3: A114327; J_1^2, J_2^2: A141387, A268759.
Cf. A000292 (row sums), A000332 (triangle sums).
T(n,k) for values of k:
A005843 (k=2), A008585 (k=3), A008586 (k=4), A008587 (k=5), A008588 (k=6), A008589 (k=7), A008590 (k=8), A008591 (k=9), A008592 (k=10), A008593 (k=11), A008594 (k=12), A008595 (k=13), A008596 (k=14), A008597 (k=15), A008598 (k=16), A008599 (k=17), A008600 (k=18), A008601 (k=19), A008602 (k=20).

Programs

  • Magma
    /* As triangle */ [[k*(n-k): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Jan 30 2016
    
  • Mathematica
    Flatten[Table[(j - m) (j + m + 1), {j, 0, 10, 1/2}, {m, -j, j}]] (* Bradley Klee, Jan 29 2016 *)
  • PARI
    {for(n=1, 13, for(k=1, n, print1(k*(n - k)," ");); print(););} \\ Indranil Ghosh, Mar 12 2017