A094060 Number of walks of length n on hexagonal grid that start and end at the origin. Intermediate returns to the origin are not permitted.
1, 0, 6, 12, 54, 216, 1032, 4896, 24606, 125040, 651348, 3432168, 18331992, 98814816, 537343632, 2942475552, 16214888286, 89835783264, 500116783740, 2795958732024, 15690597591636, 88354191756816, 499060719941616, 2826794871554112, 16052536475622792
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1291 (first 97 terms from Ludovic Schwob)
Programs
-
Maple
b:= proc(n) option remember; `if`(n<3, [1,0,6][n+1], ((n-1)* n*b(n-1) +24*(n-1)^2*b(n-2) +36*(n-1)*(n-2)*b(n-3))/n^2) end: a:= proc(n) option remember; `if`(n=0, 1, b(n)-add(a(n-i)*b(i), i=1..n-1)) end: seq(a(n), n=0..23); # Alois P. Heinz, Dec 07 2020
-
Mathematica
b[n_] := b[n] = If[n<3, {1, 0, 6}[[n+1]], ((n-1)n b[n-1] + 24(n-1)^2* b[n-2] + 36(n-1)(n-2) b[n-3])/n^2]; a[n_] := a[n] = If[n==0, 1, b[n] - Sum[a[n-i] b[i], {i, 1, n-1}]]; a /@ Range[0, 23] (* Jean-François Alcover, Jan 14 2021, after Alois P. Heinz *)
-
PARI
seq(n)={my(g=sum(m=0, n, (3*m)!/m!^3*x^(2*m)*(1+2*x)^m, O(x*x^n))); Vec(2-1/g)} \\ Andrew Howroyd, Aug 09 2025
Formula
INVERTi transform of A002898. - R. J. Mathar, Sep 29 2020