cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094060 Number of walks of length n on hexagonal grid that start and end at the origin. Intermediate returns to the origin are not permitted.

Original entry on oeis.org

1, 0, 6, 12, 54, 216, 1032, 4896, 24606, 125040, 651348, 3432168, 18331992, 98814816, 537343632, 2942475552, 16214888286, 89835783264, 500116783740, 2795958732024, 15690597591636, 88354191756816, 499060719941616, 2826794871554112, 16052536475622792
Offset: 0

Views

Author

Gareth McCaughan, Jun 10 2004

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<3, [1,0,6][n+1], ((n-1)*
          n*b(n-1) +24*(n-1)^2*b(n-2) +36*(n-1)*(n-2)*b(n-3))/n^2)
        end:
    a:= proc(n) option remember; `if`(n=0, 1,
          b(n)-add(a(n-i)*b(i), i=1..n-1))
        end:
    seq(a(n), n=0..23);  # Alois P. Heinz, Dec 07 2020
  • Mathematica
    b[n_] := b[n] = If[n<3, {1, 0, 6}[[n+1]], ((n-1)n b[n-1] + 24(n-1)^2* b[n-2] + 36(n-1)(n-2) b[n-3])/n^2];
    a[n_] := a[n] = If[n==0, 1, b[n] - Sum[a[n-i] b[i], {i, 1, n-1}]];
    a /@ Range[0, 23] (* Jean-François Alcover, Jan 14 2021, after Alois P. Heinz *)
  • PARI
    seq(n)={my(g=sum(m=0, n, (3*m)!/m!^3*x^(2*m)*(1+2*x)^m, O(x*x^n))); Vec(2-1/g)} \\ Andrew Howroyd, Aug 09 2025

Formula

INVERTi transform of A002898. - R. J. Mathar, Sep 29 2020