A094072 Coefficients arising in combinatorial field theory.
1, 6, 50, 615, 10192, 214571, 5544394, 171367020, 6208928376, 259542887975, 12356823485580, 662921411131909, 39714830070598204, 2636484537372437498, 192653800829700013970, 15405383160836582657251
Offset: 0
Keywords
References
- P. Blasiak, K. A. Penson, A. I. Solomon, A. Horzela and G. E. H. Duchamp, Some useful combinatorial formulas for bosonic operators, J. Math. Phys. 46, 052110 (2005) (6 pages).
Links
- P. Blasiak, K. A. Penson, A. I. Solomon, A. Horzela and G. E. H. Duchamp, Combinatorial field theories via boson normal ordering, arXiv:quant-ph/0405103, 2004-2006. The title of this paper in the arXiv was later changed to "Some useful combinatorial formulas for bosonic operators"
Programs
-
Maple
with(combinat): seq(bell(n+1)*sum(k^(n+1-k)*binomial(n+1,k),k=1..n+1),n=0..18);
-
Mathematica
Table[BellB[n+1]Sum[Binomial[n+1,k]k^(n+1-k),{k,n+1}],{n,0,20}] (* Harvey P. Dale, Feb 05 2015 *)
Formula
a(n) = B(n+1)*Sum_{k=1..n+1} binomial(n+1, k)*k^(n+1-k), where B(n) are the Bell numbers (A000110). - Emeric Deutsch, Nov 23 2004
E.g.f.: exp(-1)*Sum_{k>=0} exp(k*x*exp(k*x))/k!. - Vladeta Jovovic, Sep 26 2006
Extensions
More terms from Emeric Deutsch, Nov 23 2004