A094096 Min{m: n = Sum((m mod (1+k*L(n)!))*2^(k-1): 1<=k<=L(n))}, where L(n) = length of binary representation of n, cf. A070939, A000142.
1, 5, 1, 494, 533, 133, 1, 361131, 998130, 318354, 389455, 275577, 42778, 14162, 1, 4436526107, 21759994113, 223006618265, 97254937860, 19669357917
Offset: 1
Examples
n=5->'101', L(5)=3, L(5)!=6, a(5)=533: (533 mod (1+1*6))*2^0 + (533 mod (1+2*6))*2^1 + (533 mod (1+3*6))*2^2 = (533 mod 7)*1+ (533 mod 13)*2 + (533 mod 19)*4 = 1*1 + 0*2 + 1*4 = 5.
Extensions
Corrected and extended. Sean A. Irvine, Sep 17 2009
Comments