cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094133 Leyland primes: 3, together with primes of form x^y + y^x, for x > y > 1.

Original entry on oeis.org

3, 17, 593, 32993, 2097593, 8589935681, 59604644783353249, 523347633027360537213687137, 43143988327398957279342419750374600193, 4318114567396436564035293097707729426477458833, 5052785737795758503064406447721934417290878968063369478337
Offset: 1

Views

Author

Lekraj Beedassy, May 04 2004

Keywords

Comments

Contains A061119 as a subsequence.

Examples

			2^1 + 1^2, 3^2 + 2^3, 9^2 + 2^9, 15^2 + 2^15, 21^2 + 2^21, 33^2 + 2^33, 24^5 + 5^24, 56^3 + 3^56, 32^15 + 15^32, 54^7 + 7^54, 38^33 + 33^38.
		

Crossrefs

Cf. A061119 (primes where one of x,y is 2), A064539 (non-2 values where one of x,y is 2), A253471 (non-3 values where one of x,y is 3), A073499 (subset listing y where x = y+1), A076980 (Leyland numbers).

Programs

  • Maple
    N:= 10^100: # to get all terms <= N
    A:= {3}:
    for n from 2 while 2*n^n < N do
      for k from n+1 do if igcd(n,k)=1 then
         a:= n^k + k^n;
         if a > N then break fi;
         if isprime(a) then A:= A union {a} fi fi;
      od
    od:
    A; # if using Maple 11 or earlier, uncomment the next line
    # sort(convert(A,list)); # Robert Israel, Apr 13 2015
  • Mathematica
    a = {3}; Do[Do[k = m^n + n^m; If[PrimeQ[k], AppendTo[a, k]], {m, 2, n}], {n, 2, 100}]; Union[a] (* Artur Jasinski *)
    Prepend[Flatten[Map[Function[n, Map[Function[m, If[PrimeQ[m^n + n^m], m^n + n^m, Sequence[], Nothing]], Range[2, n]]], Range[2, 50]], 1], 3]//Union (* Mikk Heidemaa, Mar 27 2025 *)
  • PARI
    f(x)=my(L=log(x)); L/lambertw(L) \\ finds y such that y^y == x
    list(lim)=my(v=List()); for(x=2,f(lim/2), my(y=x+1,t); while((t=x^y+y^x)<=lim, if(ispseudoprime(t), listput(v,t)); y+=2)); Set(v) \\ Charles R Greathouse IV, Oct 28 2014

Extensions

Corrected and extended by Jens Kruse Andersen, Oct 26 2007
Edited by Hans Havermann, Apr 10 2015