A094202 Integers k whose Zeckendorf representation A014417(k) is palindromic.
0, 1, 4, 6, 9, 12, 14, 22, 27, 33, 35, 51, 56, 64, 74, 80, 88, 90, 116, 127, 145, 158, 174, 184, 197, 203, 216, 232, 234, 276, 294, 326, 368, 378, 399, 425, 441, 462, 472, 493, 519, 525, 546, 572, 588, 609, 611, 679, 708, 760, 828, 847, 915, 944, 988, 1022, 1064, 1090
Offset: 1
Examples
Fibonacci base columns are ...,8,5,3,2,1 with column entries 0 or 1 and no two consecutive ones (the Zeckendorf representation) so that each n has a unique representation. 12 is in the sequence because 12 = 8 + 3 + 1 = 10101 base Fib; 14 = 13 + 1 = 100001 base Fib.
References
- C. G. Lekkerkerker, Voorstelling van natuurlijke getallen door een som van getallen van Fibonacci, Simon Stevin vol. 29, 1952, pages 190-195.
- E. Zeckendorf, Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas, Bulletin de la Société Royale des Sciences de Liège vol. 41 (1972) pages 179-182.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..20000 (first 129 terms from Indranil Ghosh)
- Ron Knott, Fibonacci Bases.
Crossrefs
Programs
-
Mathematica
zeck[n_Integer] := Block[{k = Ceiling[ Log[ GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[ fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k-- ]; FromDigits[fr]]; a = {}; Do[z = zeck[n]; If[ FromDigits[ Reverse[ IntegerDigits[z]]] == z, AppendTo[a, n]], {n, 1123}]; a (* Robert G. Wilson v, May 29 2004 *) mirror[dig_, s_] := Join[dig, s, Reverse[dig]]; select[v_, mid_] := Select[v, Length[#] == 0 || Last[#] != mid &]; fib[dig_] := Plus @@ (dig * Fibonacci[Range[2, Length[dig] + 1]]); pals = Rest[IntegerDigits /@ FromDigits /@ Select[Tuples[{0, 1}, 7], SequenceCount[#, {1, 1}] == 0 &]]; Union@Join[{0, 1}, fib /@ Join[mirror[#, {}] & /@ (select[pals, 1]), mirror[#, {1}] & /@ (select[pals, 1]), mirror[#, {0}] & /@ pals]] (* Amiram Eldar, Jan 11 2020 *)
-
Python
from sympy import fibonacci def a(n): k=0 x=0 while n>0: k=0 while fibonacci(k)<=n: k+=1 x+=10**(k - 3) n-=fibonacci(k - 1) return x def ok(n): x=str(a(n)) return x==x[::-1] print([n for n in range(1101) if ok(n)]) # Indranil Ghosh, Jun 07 2017
Extensions
More terms from Robert G. Wilson v, May 28 2004
Offset changed to 1 by Alois P. Heinz, Aug 02 2017