A094231 Lesser member p of sexy primes (p, p+6) such that (p+1, p+2, p+3, p+4, p+5) all have the same number of prime divisors (counted with multiplicity).
601, 42181, 70201, 240953, 277493, 414361, 418793, 619813, 632147, 637073, 723161, 732233, 739433, 761393, 781961, 879001, 934481, 979201, 1154233, 1320721, 1327673, 1357673, 1611361, 1685521, 1866233, 1877833, 1950457
Offset: 1
Examples
42181 is a term because 42181 and 42187 are sexy primes while 42182-42186 each have 4 prime divisors (counting multiplicity).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1000
Programs
-
Magma
f:=func
; [p:p in PrimesUpTo(2000000)| IsPrime(p+6) and forall{k:k in [2..5]|f(p+k) eq f(p+1)} ]; // Marius A. Burtea, Dec 16 2019 -
Mathematica
Select[Range[2*10^6],AllTrue[{#,#+6},PrimeQ]&&Length[Union[ PrimeOmega[ Range[ #+1,#+5]]]]==1&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Dec 16 2015 *)