A094250 Array, A(n, k) = ((n+2)^(k+1) + (k+1)*n*(n+1) - 1)/(n+1)^2, read by antidiagonals.
1, 1, 3, 1, 3, 7, 1, 3, 8, 15, 1, 3, 9, 22, 31, 1, 3, 10, 31, 63, 63, 1, 3, 11, 42, 117, 185, 127, 1, 3, 12, 55, 199, 459, 550, 255, 1, 3, 13, 70, 315, 981, 1825, 1644, 511, 1, 3, 14, 87, 471, 1871, 4888, 7287, 4925, 1023, 1, 3, 15, 106, 673, 3273, 11203, 24420, 29133, 14767, 2047
Offset: 0
Examples
Array, A(n, k), begins: 1, 3, 7, 15, 31, 63, 127, 255, 511, ... A000225; 1, 3, 8, 22, 63, 185, 550, 1644, 4925, ... A047926; 1, 3, 9, 31, 117, 459, 1825, 7287, 29133, ... A073724; 1, 3, 10, 42, 199, 981, 4888, 24420, 122077, ... A094195; 1, 3, 11, 55, 315, 1871, 11203, 67191, 403115, ... A094259; 1, 3, 12, 70, 471, 3273, 22882, 160140, 1120941, ... Antidiagonals, T(n, k), begins as: 1; 1, 3; 1, 3, 7; 1, 3, 8, 15; 1, 3, 9, 22, 31; 1, 3, 10, 31, 63, 63; 1, 3, 11, 42, 117, 185, 127; 1, 3, 12, 55, 199, 459, 550, 255; 1, 3, 13, 70, 315, 981, 1825, 1644, 511; 1, 3, 14, 87, 471, 1871, 4888, 7287, 4925, 1023;
Links
- G. C. Greubel, Antidiagonals n = 0..50, flattened
Programs
-
Magma
A094250:= func< n,k | ((n-k+2)^(k+1) + (k+1)*(n-k)*(n-k+1) - 1)/(n-k+1)^2 >; [A094250(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Aug 18 2023
-
Mathematica
A094250[n_, k_]:= ((n-k+2)^(k+1) + (k+1)*(n-k)*(n-k+1) - 1)/(n-k+1)^2; Table[A094250[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Aug 18 2023 *)
-
SageMath
def A094250(n, k): return ((n-k+2)^(k+1) + (k+1)*(n-k)*(n-k+1) - 1)/(n-k+1)^2 flatten([[A094250(n,k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Aug 18 2023
Formula
A(n, k) = ((n+2)^(k+1) + (k+1)*n*(n+1) - 1)/(n+1)^2 (array).
T(n, k) = ((n-k+2)^(k+1) + (k+1)*(n-k)*(n-k+1) - 1)/(n-k+1)^2 (antidiagonals).
G.f. for row n: (1-(n+1)*x)/((1-(n+2)*x)*(1-x)^2).