cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A094195 Expansion of g.f.: (1-4*x)/((1-5*x)*(1-x)^2).

Original entry on oeis.org

1, 3, 10, 42, 199, 981, 4888, 24420, 122077, 610359, 3051766, 15258798, 76293955, 381469737, 1907348644, 9536743176, 47683715833, 238418579115, 1192092895522, 5960464477554, 29802322387711, 149011611938493, 745058059692400, 3725290298461932, 18626451492309589
Offset: 0

Views

Author

N. J. A. Sloane, Jun 01 2004

Keywords

Comments

An approximation to A091843.

Crossrefs

Programs

  • Magma
    [(5^(n+1) +12*n +11)/16: n in [0..40]]; // G. C. Greubel, Aug 18 2023
    
  • Mathematica
    CoefficientList[Series[(1-4x)/((1-5x)(1-x)^2),{x,0,30}],x] (* or *) LinearRecurrence[{7,-11,5},{1,3,10},30] (* Harvey P. Dale, Dec 31 2011 *)
  • SageMath
    [(5^(n+1) +12*n +11)/16 for n in range(41)] # G. C. Greubel, Aug 18 2023

Formula

a(n) = (5^(n+1) + 12*n + 11)/16.
a(n) = 7*a(n-1) - 11*a(n-2) + 5*a(n-3), with a(0)=1, a(1)=3, a(2)=10. - Harvey P. Dale, Dec 31 2011
E.g.f.: (1/16)*(5*exp(5*x) + (11 + 12*x)*exp(x)). - G. C. Greubel, Aug 18 2023

A094259 Expansion of g.f.: (1-5*x)/((1-6*x)*(1-x)^2).

Original entry on oeis.org

1, 3, 11, 55, 315, 1871, 11203, 67191, 403115, 2418655, 14511891, 87071303, 522427771, 3134566575, 18807399395, 112844396311, 677066377803, 4062398266751, 24374389600435, 146246337602535, 877478025615131, 5264868153690703, 31589208922144131, 189535253532864695
Offset: 0

Views

Author

N. J. A. Sloane, Jun 02 2004

Keywords

Crossrefs

Cf. A094195.
A row of A094250.

Programs

  • Magma
    [(6^(n+1) +20*n +19)/25: n in [0..40]]; // G. C. Greubel, Aug 18 2023
    
  • Mathematica
    LinearRecurrence[{8,-13,6}, {1,3,11}, 41] (* G. C. Greubel, Aug 18 2023 *)
  • SageMath
    [(6^(n+1) +20*n +19)/25 for n in range(41)] # G. C. Greubel, Aug 18 2023

Formula

a(n) = (6^(n+1) + 20*n + 19)/25.
E.g.f.: (1/25)*(6*exp(6*x) + (19 + 20*x)*exp(x)). - G. C. Greubel, Aug 18 2023
Showing 1-2 of 2 results.