cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094268 Starting term of smallest consecutive n-tuples of abundant numbers.

Original entry on oeis.org

12, 5775, 171078830
Offset: 1

Views

Author

Lekraj Beedassy, Jun 02 2004

Keywords

Comments

The triple 171078830, 171078831, 171078832 was apparently found by Laurent Hodges and Michael Reid in 1995.
The starting term of the smallest consecutive 4-tuple of abundant numbers is at most 141363708067871564084949719820472453374 - Bruno Mishutka (bruno.mishutka(AT)googlemail.com), Nov 01 2007
Paul Erdős showed that there are two absolute constants c1, c2 such that for all large n there are at least c1 log log log n but not more than c2 log log log n consecutive abundant numbers less than n. - Bruno Mishutka (bruno.mishutka(AT)googlemail.com), Nov 01 2007
From Jianing Song, Apr 10 2021: (Start)
a(n) exists for all n. Proof: since the infinite product Product_{p prime} (1 + 1/p) diverges, we can find a strictly increasing sequence {b(m)} such that b(0) = 0, Product_{k=b(m)+1..b(m+1)} (1 + 1/prime(k)) > 2 for all m. Given n, by Chinese Remainder Theorem, we can find N such that N + m divides Product_{k=b(m)+1..b(m+1)} prime(k) for m = 0..n-1, then sigma(N + m)/(N + m) >= Product_{k=b(m)+1..b(m+1)} (1 + 1/prime(k)) > 2.
For example, if N is divisible by 2*3*5, N+1 is divisible by 7*11*...*73, N+2 is divisible by 79*83*...*7499, N+3 is divisible by 7507*7517*...*57081677, N+4 is divisible by 57081679*57081697*...*(some very large prime), then N through N+4 are consecutive abundant numbers.
Of course, the number N found using this method will be extremely large, since Product_{k=1..K} (1 + 1/prime(k)) ~ log(log(K)). (End)

References

  • J.-M. De Koninck and A. Mercier, 1001 Problemes en Theorie Classique Des Nombres, Problem 771, pp. 98, 327, Ellipses, Paris, 2004.
  • S. Kravitz, Three Consecutive Abundant Numbers, Journal of Recreational Mathematics, 26:2 (1994), 149. Solution by L. Hodges and M. Reid, JRM, 27:2 (1995), 156-157.

Crossrefs