cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094289 Decimal expansion of Sum(1/p^p) where p is prime.

Original entry on oeis.org

2, 8, 7, 3, 5, 8, 2, 5, 1, 3, 0, 6, 2, 2, 4, 1, 7, 9, 7, 3, 6, 4, 1, 8, 0, 4, 5, 8, 7, 8, 9, 3, 2, 2, 0, 6, 9, 5, 5, 9, 0, 8, 8, 0, 2, 6, 8, 5, 8, 8, 1, 7, 0, 9, 2, 9, 9, 4, 9, 9, 3, 6, 8, 9, 4, 7, 0, 8, 9, 3, 2, 9, 2, 7, 8, 6, 8, 8, 9, 3, 9, 7, 7, 0, 2, 0, 9, 1, 2, 4, 2, 8, 0, 0, 2, 9, 0, 9, 0, 0, 5, 5, 9, 2, 9
Offset: 0

Views

Author

Cino Hilliard, Jul 31 2004

Keywords

Comments

This constant approximately equals 5226294/18187381. - Yalcin Aktar, Nov 05 2006
The asymptotic mean of A129251. - Amiram Eldar, Nov 07 2022

Examples

			0.287358251306224179736418045878932206955908802685881709299499368947089...
		

Crossrefs

Cf. A073009, A083648, A051674 (prime(n)^prime(n)), A129251.

Programs

  • Mathematica
    digits = 105; n0 = 10; dn = 10; Clear[f]; f[n_] := f[n] = RealDigits[ Sum[ 1/Prime[k]^Prime[k], {k, 1, n}], 10, digits+5] // First; f[n = n0]; f[n = n+dn]; While[Print["n = ", n]; f[n] != f[n-dn], n = n+dn]; Take[f[n], digits] (* Jean-François Alcover, Nov 22 2013 *)
  • PARI
    ptothep(n) = { local(x,s,a); default(realprecision,200); s=0; forprime(x=2,n,s+=1./x^x); a=Vec(Str(s)); for(x=3,n,print1(eval(a[x]),",")) }

Extensions

Offset corrected by R. J. Mathar, Feb 05 2009