cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A051674 a(n) = prime(n)^prime(n).

Original entry on oeis.org

4, 27, 3125, 823543, 285311670611, 302875106592253, 827240261886336764177, 1978419655660313589123979, 20880467999847912034355032910567, 2567686153161211134561828214731016126483469, 17069174130723235958610643029059314756044734431
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that bigomega(k)^(bigomega(k)) = k, where bigomega = A001222. - Lekraj Beedassy, Aug 21 2004
Positive k such that k' = k, where k' is the arithmetic derivative of k. - T. D. Noe, Oct 12 2004
David Beckwith proposes (in the AMM reference): "Let n be a positive integer and let p be a prime number. Prove that (p^p) | n! implies that (p^(p + 1)) | n!". - Jonathan Vos Post, Feb 20 2006
Subsequence of A100716; A003415(m*a(n)) = A129283(m)*a(n), especially A003415(a(n)) = a(n). - Reinhard Zumkeller, Apr 07 2007
A168036(a(n)) = 0. - Reinhard Zumkeller, May 22 2015

Examples

			a(1) = 2^2 = 4.
a(2) = 3^3 = 27.
a(3) = 5^5 = 3125.
		

References

  • J.-M. De Koninck & A. Mercier, 1001 Problemes en Theorie Classique Des Nombres, Problem 740 pp. 95; 312, Ellipses Paris 2004.

Crossrefs

Cf. A000040, A000312, A003415 (arithmetic derivative of n), A129150, A129151, A129152, A048102, A072873 (multiplicative closure), A104126.
Subsequence of A100717; A203908(a(n)) = 0.
Subsequence of A097764.
Cf. A168036, A094289 (decimal expansion of Sum(1/p^p)).

Programs

Formula

a(n) = A000312(A000040(n)). - Altug Alkan, Sep 01 2016
Sum_{n>=1} 1/a(n) = A094289. - Amiram Eldar, Oct 13 2020

A129251 Number of distinct prime factors p of n such that p^p is a divisor of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 07 2007

Keywords

Comments

Average value is A094289 = 0.28735...; attains record values on A076265, in particular a(A076265(n)) = n.

Examples

			Since 15 = 3^1 * 5^1, a(15) = 0. But 16 = 2^4 is divisible by 2^2, so a(16) = 1. - _Michael B. Porter_, Aug 18 2016
		

Crossrefs

Cf. A048103 (indices of zeros), A100716 (nonzeros).
Differs from A276077 for the first time at n=625, where a(625) = 0, while A276077(625) = 1.

Programs

Formula

a(A048103(n)) = 0, a(A100716(n)) > 0.
a(n) << sqrt(log n)/log log n. - Charles R Greathouse IV, Sep 14 2015
From Antti Karttunen, Aug 18 2016: (Start)
These formulas use Iverson bracket, which gives 1 as its value if the condition given inside [ ] is true and 0 otherwise:
a(1) = 0, for n > 1, a(n) = a(A028234(n)) + [A067029(n) >= A020639(n)].
Or, for n > 1, a(n) = a(A028234(n)) + [0 = n mod (A020639(n)^A020639(n))]. (End)
a(n) = Sum_{d|n} [rad(d) = Omega(d)*[omega(d) = 1]], where [ ] is the Iverson bracket. - Wesley Ivan Hurt, Feb 09 2022
Additive with a(p^e) = 1 if e >= p, and 0 otherwise. - Amiram Eldar, Nov 07 2022

Extensions

Data section filled up to 120 terms by Antti Karttunen, Aug 18 2016

A076265 a(n) = Product_{i=1..n} prime(i)^prime(i).

Original entry on oeis.org

4, 108, 337500, 277945762500, 79301169838123235887500, 24018350267611933650627567399079537500, 19868946365457062696924774946056904675112420776003728137500
Offset: 1

Views

Author

Jeff Burch, Nov 23 2002

Keywords

Comments

Denominator of Sum_{i=1..n} 1/(p(i)^p(i)), where p(i) = i-th prime. The numerators are in A117579. E.g., 1/4, 31/108, 96983/337500, 79870008269/277945762500, ... - Jonathan Vos Post, Mar 29 2006
Equally, denominator of Sum_{k=1..n}(-1)^(k+1) * 1/p(k)^p(k), where p(k) = prime(k). - Alexander Adamchuk, Aug 22 2006
C = Sum_{k>=1} (-1)^(k+1)/(prime(k)^prime(k)) = 1/2^2 - 1/3^3 + 1/5^5 - 1/7^7 + 1/11^11 - 1/13^13 + ... A122147 is the decimal expansion of C = 0.213281748700785698255627... - Alexander Adamchuk, Aug 22 2006
Hyperprimorials, from primorials by analogy with hyperfactorials. See A006939. - Matthew Campbell, Jul 30 2015

Examples

			A122148(n)/a(n) begins 1/4, 23/108, 71983/337500, ... - _Alexander Adamchuk_, Aug 22 2006
		

Crossrefs

Programs

  • Mathematica
    Table[Denominator[Sum[1/Prime[k]^Prime[k],{k,1,n}]],{n,1,10}] (* Alexander Adamchuk, Aug 22 2006 *)
    Denominator[Accumulate[1/#^#&/@Prime[Range[10]]]] (* Harvey P. Dale, Jan 24 2013 *)
  • PARI
    a(n)=prod(i=1,n,prime(i)^prime(i)) \\ Charles R Greathouse IV, Aug 05 2015

Formula

log a(n) ~ (n^2 log^2 n)/2. - Charles R Greathouse IV, Sep 14 2015

Extensions

Entry revised by N. J. A. Sloane, Apr 10 2006
Edited by N. J. A. Sloane, Aug 04 2008 at the suggestion of R. J. Mathar

A100124 Decimal expansion of Sum_{n>0} 1/prime(n)!.

Original entry on oeis.org

6, 7, 5, 1, 9, 8, 4, 3, 7, 9, 1, 1, 1, 1, 4, 3, 4, 1, 9, 0, 0, 5, 6, 1, 6, 0, 7, 5, 9, 1, 3, 5, 7, 2, 9, 9, 5, 3, 9, 2, 7, 6, 7, 8, 8, 5, 6, 5, 1, 3, 2, 6, 5, 1, 5, 6, 0, 3, 4, 1, 0, 6, 4, 5, 1, 6, 8, 8, 5, 8, 6, 1, 4, 8, 5, 4, 2, 4, 4, 3, 3, 4, 4, 1, 1, 4, 6, 2, 7, 2, 2, 8, 0, 2, 7, 8, 9, 5, 7, 1
Offset: 0

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Nov 11 2004

Keywords

Comments

Mingarelli shows that this constant is irrational. - Charles R Greathouse IV, Nov 05 2013
Convergence follows because A100124 < e - 2 = 0.71828... = 1/2! + 1/3! + 1/4! + 1/5! because e - 2 contains every term in A100124. The relation to e suggests a different question: is this constant not just irrational but also transcendental? - Timothy Varghese, May 07 2014
This is e times the probability that a prime is chosen from a Poisson distribution with lambda = 1. - Charles R Greathouse IV, Dec 07 2014

Examples

			0.67519843791111434190056160759135729953927678856513265156034106451688586148...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sum[1/Prime[n]!, {n, 1, 20}], 10, 100][[1]] (* Amiram Eldar, Nov 25 2020 *)
  • PARI
    default(realprecision,100); sum(n=1,100,1/(prime(n)!),0.)
    
  • PARI
    prec=exp(lambertw(default(realprecision)/exp(1)*log(10))+1)+9; P=s=.5;p=2;forprime(q=3,prec,P/=prod(i=p+1,q,i);s+=P;p=q); s \\ Charles R Greathouse IV, Nov 05 2013

Formula

Equals Sum_{k>0} A010051(k)/k!. - R. J. Cano, Jan 25 2017
From Amiram Eldar, Nov 25 2020: (Start)
Equals Sum_{k>=1} 1/A039716(k).
Equals Sum_{k>=1} pi(k)/((k+1)*(k-1)!), where pi = A000720. (End)

A100127 Decimal expansion of Sum_{n>0} prime(n)/n!.

Original entry on oeis.org

4, 7, 3, 8, 6, 3, 8, 7, 0, 2, 6, 8, 6, 2, 1, 9, 9, 9, 2, 7, 1, 7, 7, 9, 4, 7, 0, 3, 4, 8, 1, 2, 4, 9, 5, 5, 3, 6, 0, 1, 8, 2, 3, 8, 4, 6, 6, 4, 2, 1, 0, 6, 6, 4, 2, 4, 8, 0, 9, 6, 1, 9, 3, 4, 8, 4, 3, 7, 5, 4, 0, 8, 7, 7, 9, 6, 9, 7, 1, 6, 7, 4, 8, 9, 2, 2, 7, 2, 2, 1, 3, 7, 6, 0, 2, 3, 3, 7, 7, 4, 5, 6, 7, 7, 1
Offset: 1

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Nov 11 2004

Keywords

Comments

This constant is irrational (Erdős, 1958). - Amiram Eldar, Apr 13 2020

Examples

			4.73863870268621999271779470348124955360182384664210664248096193484375408779697167489...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ Sum[ Prime[n]/n!, {n, 75}], 10, 105][[1]] (* Robert G. Wilson v, Jan 18 2015 *)
  • PARI
    default(realprecision,100);sum(n=1,100,prime(n)/(n!),0.)

A100126 Decimal expansion of Sum_{n>0} n/(prime(n)!).

Original entry on oeis.org

8, 5, 9, 1, 2, 7, 1, 1, 0, 3, 5, 1, 0, 8, 8, 4, 3, 0, 3, 6, 8, 2, 2, 8, 2, 6, 2, 3, 0, 7, 5, 3, 7, 9, 0, 8, 2, 5, 8, 5, 3, 4, 5, 7, 7, 0, 6, 1, 7, 7, 6, 1, 7, 5, 6, 6, 1, 6, 7, 6, 1, 7, 7, 5, 8, 6, 8, 3, 7, 3, 2, 7, 9, 8, 0, 3, 7, 3, 5, 8, 8, 9, 7, 5, 1, 3, 2, 2, 0, 2, 2, 4, 8, 2, 6, 2, 5, 6, 3, 9
Offset: 0

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Nov 11 2004

Keywords

Examples

			0.8591271103510884303682282623075379082585345770617761756616761775868373279803735889751322022482625639...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Total[Table[n/Prime[n]!,{n,20}]],10,120][[1]] (* Harvey P. Dale, Oct 26 2015 *)
  • PARI
    default(realprecision,100);sum(n=1,100,n/(prime(n)!),0.)

A122147 Decimal expansion of Sum[ (-1)^(k+1) * 1/p(k)^p(k) ], where p(k) = Prime[k].

Original entry on oeis.org

2, 1, 3, 2, 8, 1, 7, 4, 8, 7, 0, 0, 7, 8, 5, 6, 9, 8, 2, 5, 5, 6, 2, 7, 4, 8, 1, 3, 6, 9, 8, 4, 8, 4, 3, 6, 0, 2, 7, 7, 2, 7, 9, 7, 2, 5, 3, 2, 2, 4, 6, 4, 1, 0, 0, 7, 1, 4, 2, 2, 2, 2, 0, 1, 2, 3, 8, 3, 9, 5, 6, 7, 6, 0, 0, 3, 7, 2, 6, 9, 0, 0, 5, 6, 3, 7, 1, 2, 2, 0, 1, 1, 8, 6, 1, 8, 8, 2, 3, 4, 4, 1, 5, 5, 5
Offset: 0

Views

Author

Alexander Adamchuk, Aug 22 2006

Keywords

Comments

C = Sum[ (-1)^(k+1) * 1/Prime[k]^Prime[k], {k,1,Infinity} ] = 1/2^2 - 1/3^3 + 1/5^5 - 1/7^7 + 1/11^11 - 1/13^13 + ... Partial sums are A122148[n] / A076265[n] = Sum[ (-1)^(k+1) * 1/Prime[k]^Prime[k], {k,1,n} ] = 1/4, 23/108, 71983/337500, ...

Examples

			C = 0.2132817487007856982556274813698484360277279725322464100714222201238395676003\
726900563712201186188234415559844581411471306301650311286030077813464608267160\
801494597797561591251174806253914566160177882...
		

Crossrefs

A122148 Numerator of Sum[ (-1)^(k+1) * 1/p(k)^p(k), {k,1,n}], where p(k) = Prime[k].

Original entry on oeis.org

1, 23, 71983, 59280758269, 16913492177093188294859, 5122675745984257357873512804013239827, 4237683625666802603266159755806379107958975382128522814879
Offset: 1

Views

Author

Alexander Adamchuk, Aug 22 2006

Keywords

Comments

C = Sum[ (-1)^(k+1) * 1/Prime[k]^Prime[k], {k,1,Infinity} ] = 1/2^2 - 1/3^3 + 1/5^5 - 1/7^7 + 1/11^11 - 1/13^13 + ... A122147[n] is a decimal expansion of C = 0.213281748700785698255627...

Examples

			a[n] / A076265[n] begins 1/4, 23/108, 71983/337500, ...
		

Crossrefs

Programs

  • Mathematica
    Table[Numerator[Sum[(-1)^(k+1)*1/Prime[k]^Prime[k],{k,1,n}]],{n,1,10}]

Formula

a(n) = Numerator[ Sum[ (-1)^(k+1) * 1/Prime[k]^Prime[k], {k,1,n} ] ].

A351411 Number of divisors of n not of the form p^p, p prime.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 3, 3, 4, 2, 5, 2, 4, 4, 4, 2, 6, 2, 5, 4, 4, 2, 7, 3, 4, 3, 5, 2, 8, 2, 5, 4, 4, 4, 8, 2, 4, 4, 7, 2, 8, 2, 5, 6, 4, 2, 9, 3, 6, 4, 5, 2, 7, 4, 7, 4, 4, 2, 11, 2, 4, 6, 6, 4, 8, 2, 5, 4, 8, 2, 11, 2, 4, 6, 5, 4, 8, 2, 9, 4, 4, 2, 11, 4, 4, 4, 7, 2, 12, 4, 5, 4
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 10 2022

Keywords

Examples

			a(108) = 10; 2 of the 12 divisors of 108 are of the form p^p (p prime), namely 4 = 2^2 and 27 = 3^3; therefore a(108) = 12-2 = 10.
		

Crossrefs

Cf. A000005 (tau), A001221 (omega), A001222 (Omega), A007947 (rad).

Programs

  • Mathematica
    f1[p_, e_] := e + 1; f2[p_, e_] := If[e < p, 0, 1]; a[1] = 1; a[n_] := Times @@ f1 @@@ (f = FactorInteger[n]) - Plus @@ f2 @@@ f; Array[a, 100] (* Amiram Eldar, Oct 01 2023 *)
  • PARI
    a(n) = {my(f = factor(n)); vecprod(apply(x -> x+1, f[, 2])) - sum(i = 1, #f~, f[i, 2] >= f[i, 1]); } \\ Amiram Eldar, Oct 01 2023

Formula

a(n) = tau(n) - Sum_{d|n} [rad(d) = Omega(d)*[omega(d) = 1]], where [ ] is the Iverson bracket.
a(n) = A000005(n) - A129251(n).
Sum_{k=1..n} a(k) ~ n * (log(n) + c), where c = A147533 - A094289 = -0.1329269215... . Amiram Eldar, Oct 01 2023

A100128 Decimal expansion of Sum_{n>0} 1/(n*prime(n)^n).

Original entry on oeis.org

5, 5, 8, 3, 2, 7, 6, 2, 2, 2, 3, 1, 7, 6, 9, 1, 5, 8, 6, 1, 4, 2, 7, 9, 1, 9, 6, 8, 0, 3, 6, 0, 4, 6, 9, 5, 1, 7, 5, 2, 5, 2, 1, 2, 8, 2, 0, 8, 7, 4, 2, 0, 1, 7, 3, 9, 0, 2, 2, 2, 9, 1, 7, 4, 2, 3, 5, 8, 5, 4, 7, 6, 3, 3, 1, 6, 3, 7, 6, 1, 7, 6, 5, 2, 0, 0, 9, 3, 6, 9, 6, 7, 2, 6, 5, 2, 1, 0, 4, 0
Offset: 0

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Nov 11 2004

Keywords

Examples

			0.5583276222317691586142791968036046951752521282087420173902229174235854763316376176520093696726521040...
		

Crossrefs

Programs

  • PARI
    suminf(k=1, 1/(k*prime(k)^k))
Showing 1-10 of 12 results. Next