A094391 A Beatty sequence using exp(Pi/4)/(exp(Pi/4) - 1).
1, 3, 5, 7, 9, 11, 12, 14, 16, 18, 20, 22, 23, 25, 27, 29, 31, 33, 34, 36, 38, 40, 42, 44, 45, 47, 49, 51, 53, 55, 56, 58, 60, 62, 64, 66, 68, 69, 71, 73, 75, 77, 79, 80, 82, 84, 86, 88, 90, 91, 93, 95, 97, 99, 101, 102, 104, 106, 108, 110, 112, 113, 115, 117, 119, 121, 123
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A094390.
Programs
-
Magma
R:= RealField(100); [Floor(n*Exp(Pi(R)/4)/(Exp(Pi(R)/4)-1)): n in [1..100]]; // G. C. Greubel, Sep 27 2024
-
Mathematica
c = E^(Pi/4); d = c/(c-1); Table[Floor[n*d], {n,70}]
-
SageMath
[int(n*exp(pi/4)/(exp(pi/4)-1)) for n in range(1,101)] # G. C. Greubel, Sep 27 2024
Formula
a(n) = floor(n * exp(Pi/4)/(exp(Pi/4) - 1)).
Comments