A094395 Odd composite n such that n divides Fibonacci(n) + 1.
5777, 10877, 17261, 75077, 80189, 100127, 113573, 120581, 161027, 162133, 163059, 231703, 300847, 430127, 618449, 635627, 667589, 851927, 1033997, 1106327, 1256293, 1388903, 1697183, 1842581, 2263127, 2435423, 2512889, 2662277
Offset: 1
Keywords
Links
- Giovanni Resta, Table of n, a(n) for n = 1..579 (terms < 4*10^9)
- R. Israel and N. Elkies, Fibonacci == -1 mod p^2, Mathematics StackExchange, July 2015.
- R. J. McIntosh and E. L. Roettger, A search for Fibonacci-Wieferich and Wolstenholme primes, Math. Comp. 76 (2007), 2087-2094.
Programs
-
Maple
with(combinat):test:=n->(fibonacci(n)+1) mod n= 0: select(test and not isprime ,[seq(2*k+1,k=1..10000)]); # Robert FERREOL, Jul 14 2015
-
Mathematica
Select[ Range[3, 300000, 2], !PrimeQ[ # ] && Mod[Fibonacci[ # ] + 1, # ] == 0 &]
-
PARI
main(size)=my(v=vector(size),i,t=1); for(i=1,size, while(1, if(t%2==1&&omega(t)>1&&(fibonacci(t)+1)%t==0, v[i]=t; break, t++)); t++); v; \\ Anders Hellström, Jul 17 2015
-
PARI
is(n)=((Mod([1,1;1,0],n))^n)[1,2]==-1 && n%2 && !isprime(n) \\ Charles R Greathouse IV, Jul 20 2015
Extensions
a(6)-a(14) from Robert G. Wilson v, May 01 2004
More terms from Ryan Propper, Aug 03 2005
Comments