cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A005845 Bruckman-Lucas pseudoprimes: k | (L_k - 1), where k is composite and L_k = Lucas numbers A000032.

Original entry on oeis.org

705, 2465, 2737, 3745, 4181, 5777, 6721, 10877, 13201, 15251, 24465, 29281, 34561, 35785, 51841, 54705, 64079, 64681, 67861, 68251, 75077, 80189, 90061, 96049, 97921, 100065, 100127, 105281, 113573, 118441, 146611, 161027
Offset: 1

Views

Author

Keywords

Comments

This uses the definition of "Lucas pseudoprime" by Bruckman, not the one by Baillie and Wagstaff. - R. J. Mathar, Jul 15 2012
Unlike the earlier Baillie-Wagstaff Lucas pseudoprimes A217120, these have significant overlap with the Fermat primality test. For example, the number 82380774001 is both an A005845 Lucas pseudoprime and a Fermat pseudoprime to the first 407 prime bases. - Dana Jacobsen, Jan 10 2015
k in A002808 such that A213060(k) = 1. - Robert Israel, Jul 14 2015

References

  • Paulo Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 104.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 105.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Somer, Lawrence. "Generalization of a Theorem of Bruckman on Dickson Pseudoprimes." Fibonacci Quarterly 60:4 (2022), 357-361.

Crossrefs

Cf. A094394, A094395 (analogous numbers with the Fibonacci sequence). - Robert FERREOL, Jul 14 2015
Cf. A213060 (L(n) mod n).

Programs

  • Haskell
    a005845 n = a005845_list !! (n-1)
    a005845_list = filter (\x -> (a000032 x - 1) `mod` x == 0) a002808_list
    -- Reinhard Zumkeller, Nov 13 2014
    
  • Maple
    with(combinat):lucas:=n->fibonacci(n-1)+fibonacci(n+1):
    test:=n->lucas(n) mod n=1:select(test and not isprime,[seq(n,n=1..10000)]); # Robert FERREOL, Jul 14 2015
  • Mathematica
    Select[Range[2,170000],!PrimeQ[#]&&Divisible[LucasL[#]-1,#]&] (* Harvey P. Dale, Mar 08 2014 *)
  • PARI
    is(n)=my(M=Mod([1,1;1,0],n)^n);M[1,1]+M[2,2]==1 && !isprime(n) && n>1 \\ Charles R Greathouse IV, Dec 27 2013
    
  • Python
    from sympy import isprime
    from itertools import count, islice
    def agen(): # generator of terms
        L0, L1 = 2, 1
        for k in count(1):
            L0, L1 = L1, L0+L1
            if k > 1 and not isprime(k) and (L0-1)%k == 0:
                yield k
    print(list(islice(agen(), 32))) # Michael S. Branicky, Apr 07 2024

Extensions

More terms from David Broadhurst

A094394 Odd composites m that divide Fibonacci(m)-1.

Original entry on oeis.org

323, 2737, 4181, 6479, 6721, 7743, 11663, 13201, 15251, 18407, 19043, 23407, 27071, 34561, 34943, 35207, 39203, 44099, 47519, 51841, 51983, 53663, 54839, 64079, 64681, 65471, 67861, 68251, 72831, 78089, 79547, 82983, 86063, 90061, 94667
Offset: 1

Views

Author

Eric Rowland, May 01 2004

Keywords

Comments

No terms satisfy the Fermat criterion 2^(a(n)-1) mod a(n) = 1. - Gary Detlefs, May 25 2014
For each prime p, Fibonacci(p) = 5^((p-1)/2) mod p, so p divides Fibonacci(p) - 1 for each prime p=10k+-1. Hence it is interesting to seek also nonprimes with the same property, a motivation for this sequence. - Robert FERREOL, Jul 14 2015

Crossrefs

Programs

  • Maple
    with(combinat):test:=n->(fibonacci(n)-1) mod n= 0:
    select(test and not isprime ,[seq(2*k+1,k=1..10000)]); # Robert FERREOL, Jul 14 2015
  • Mathematica
    Select[Range[2, 50000], OddQ[#] && ! PrimeQ[#] && Mod[Fibonacci[#] - 1, #] == 0 &]
  • PARI
    main(m)=forcomposite(n=1,m,if(((n%2==1)&&(fibonacci(n)-1)%n==0),print1(n,", "))); \\ Anders Hellström, Aug 12 2015

Extensions

Offset corrected by Giovanni Resta, Jul 20 2013

A212424 Frobenius pseudoprimes with respect to Fibonacci polynomial x^2 - x - 1.

Original entry on oeis.org

4181, 5777, 6721, 10877, 13201, 15251, 34561, 51841, 64079, 64681, 67861, 68251, 75077, 90061, 96049, 97921, 100127, 113573, 118441, 146611, 161027, 162133, 163081, 186961, 197209, 219781, 231703, 252601, 254321, 257761, 268801, 272611
Offset: 1

Views

Author

Max Alekseyev, May 16 2012

Keywords

Comments

Grantham incorrectly claims that "the first Frobenius pseudoprime with respect to the Fibonacci polynomial x^2 - x - 1 is 5777". Crandall and Pomerance state that the first such Frobenius pseudoprime is actually 4181.
The Frobenius (1,-1) pseudoprimes are a subset of the odd Fibonacci pseudoprimes A081264. Among other ways, this can be seen by Theorem 3.6.6 of Crandall and Pomerance (2005) where the Frobenius criterion with respect to x^2 - Px + Q is an additional condition on an input which has passed the Lucas test for the same polynomial. - Dana Jacobsen, Aug 05 2015
Many other quadratics have a sparser set of pseudoprimes. For example, while there are 98702 pseudoprimes below 10^13 with respect to the Fibonacci polynomial, there are only 3897 for x^2 - 3x - 5. - Dana Jacobsen, Aug 05 2015
This is the intersection of A049062 and (A081264 union A141137), that is, composite k coprime to 5 such that Fibonacci(k) == (k/5) (mod k) and that k divides Fibonacci(k-(k/5)), where (k/5) is the Legendre or Jacobi symbol. - Jianing Song, Sep 12 2018

References

  • R. Crandall, C. B. Pomerance. Prime Numbers: A Computational Perspective. Springer, 2nd ed., 2005.

Crossrefs

Terms congruent to 2 or 3 mod 5 are given in A212423.

Programs

  • PARI
    { isFP(n) = if(ispseudoprime(n),return(0)); t=Mod(x*Mod(1,n),(x^2-x-1)*Mod(1,n))^n; (kronecker(5,n)==-1 && t==1-x)||(kronecker(5,n)==1 && t==x) }
    
  • Perl
    use ntheory ":all"; foroddcomposites { say if is_frobenius_pseudoprime($,1,-1) } 1e10; # _Dana Jacobsen, Aug 05 2015

A094411 Composite numbers k that divide both Fibonacci(k+1) and Fibonacci(k) + 1.

Original entry on oeis.org

5777, 10877, 75077, 80189, 100127, 113573, 161027, 162133, 231703, 430127, 618449, 635627, 667589, 851927, 1033997, 1106327, 1256293, 1388903, 1697183, 2263127, 2435423, 2512889, 2662277, 3175883, 3399527, 3452147, 3774377
Offset: 1

Views

Author

Eric Rowland, May 01 2004

Keywords

Comments

Also composites k that divide both Fibonacci(k+1) and Lucas(k) - 1. - Gary Detlefs, Feb 28 2013

Crossrefs

Programs

  • Mathematica
    Select[Range[2, 50000], ! PrimeQ[ # ] && Mod[Fibonacci[ # + 1], # ] == 0 && Mod[Fibonacci[ # ] + 1, # ] == 0 &]

Extensions

More terms from Gareth McCaughan, Jun 11 2004
More terms from Ryan Propper, Aug 04 2005
Offset corrected by Giovanni Resta, Jul 20 2013

A182554 Composite numbers k that divide Fibonacci(k+1) or Fibonacci(k-1).

Original entry on oeis.org

323, 377, 442, 1891, 2737, 2834, 3827, 4181, 5777, 6479, 6601, 6721, 8149, 10877, 11663, 13201, 13981, 15251, 17119, 17711, 18407, 19043, 20999, 23407, 25877, 27323, 30889, 34561, 34943, 35207, 39203, 40501, 44099, 47519, 50183, 51841, 51983, 52701, 53663
Offset: 1

Views

Author

Gary Detlefs, May 04 2012

Keywords

Comments

Pseudoprimes to a Fibonacci criterion for primality.
It is known that for prime p <> 5, Fibonacci(p-1) or Fibonacci(p+1) is divisible by p. (see Burton reference)
Primes for which Fibonacci(p-1) are divisible by p are congruent to {0,1,4} mod 5 and are listed in A038872.
Primes for which Fibonacci(p+1) are divisible by p are congruent to {2,3} mod 5 and are listed in A003631.
For n <= 1000, a(n) is squarefree (see A005117). - Dmitry Kamenetsky, Jul 20 2015
Any nonsquarefree term is divisible by the square of a Fibonacci-Wieferich prime (i.e., a prime p such that Fibonacci(j) == 0 (mod p^2) for some j not divisible by p). No Fibonacci-Wieferich primes are known, and there are none < 2*10^14, although it is conjectured that there are infinitely many. - Robert Israel, Jul 22 2015

References

  • David M. Burton, Elementary Number Theory, Allyn and Bacon, 1980, p. 292, #1.

Crossrefs

Programs

  • Maple
    with(combinat): f:= n-> fibonacci(n): for n from 1 to 40000 do if (f(n+1)/n = floor(f(n+1)/n) or f(n-1)/n=floor(f(n-1)/n)) and not isprime(n) then print(n) fi od;
  • Mathematica
    Select[Range[50000], CompositeQ[#] && (Divisible[Fibonacci[# - 1], #] || Divisible[Fibonacci[# + 1], #]) &] (* Amiram Eldar, Sep 12 2022 *)
  • PARI
    p=2;forprime(q=3,1e5,for(n=p+1,q-1,t=Mod([1,1;1,0],n)^(n-1);if(t[1,2]==0 || (t*[1,1;1,0]^2)[1,2]==0,print1(n", ")));p=q) \\ Charles R Greathouse IV, May 05 2012

A319043 Composite numbers k such that Pell(k) == -1 (mod k).

Original entry on oeis.org

741, 3827, 11395, 13067, 27971, 35459, 39059, 84587, 92833, 117739, 134579, 134945, 155819, 177497, 189419, 332949, 382771, 437579, 469699, 473891, 548627, 600059, 632269, 643259, 656083, 677379, 724883, 783579, 828827, 895299, 966779, 1015429, 1021987
Offset: 1

Views

Author

Jon E. Schoenfield, Sep 08 2018

Keywords

Comments

It appears that most of the terms of A319041 (Numbers k such that Pell(k) == -1 (mod k)) are primes; this sequence lists the composites.
For the composite numbers k such that Pell(k) == 1 (mod k), see A319042.
Numbers that are terms of this sequence seem to be considerably less common than those in A319042; e.g., the numbers of terms in that sequence up to 10^3, 10^4, 10^5, and 10^6 are 5, 21, 67, and 200, respectively, while the corresponding term counts here are only 1, 2, 9, and 31. Why is this?

Examples

			k=741 is in the sequence: Pell(741) = 741*M - 1 == -1 (mod 741) (where M is a large integer).
k=6 is not in the sequence: Pell(6) = 70 = 6*12 - 2 !== -1 (mod 6).
		

Crossrefs

Cf. A000129 (Pell numbers), A094395, A319040, A319041, A319042.

A094412 Numbers k that divide Fibonacci(k+1) but do not divide Fibonacci(k) + 1.

Original entry on oeis.org

323, 377, 2834, 3827, 6479, 11663, 18407, 19043, 20999, 23407, 25877, 27323, 34943, 35207, 39203, 44099, 47519, 50183, 51983, 53663, 60377, 65471, 78089, 79547, 81719, 82983, 84279, 84419, 86063, 90287, 94667, 104663, 109871, 121103, 121393
Offset: 1

Views

Author

Eric Rowland, May 01 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[50000], ! Mod[Fibonacci[ # ] + 1, # ] == 0 && Mod[Fibonacci[ # + 1], # ] == 0 &]
    Select[Range[122000],Divisible[{Fibonacci[#+1],Fibonacci[#]+1},#]=={True,False}&] (* Harvey P. Dale, Apr 16 2019 *)
  • PARI
    fibmod(n,m)=(Mod([0,1;1,1],m)^n*[0;1])[1,1]
    is(n)=fibmod(n+1,n)==0 && fibmod(n,n)!=-1 \\ Charles R Greathouse IV, Nov 04 2016

A212423 Frobenius pseudoprimes == 2,3 (mod 5) with respect to Fibonacci polynomial x^2 - x - 1.

Original entry on oeis.org

5777, 10877, 75077, 100127, 113573, 161027, 162133, 231703, 430127, 635627, 851927, 1033997, 1106327, 1256293, 1388903, 1697183, 2263127, 2435423, 2662277, 3175883, 3399527, 3452147, 3774377, 3900797, 4109363, 4226777, 4403027, 4828277, 4870847
Offset: 1

Views

Author

Max Alekseyev, May 16 2012

Keywords

Comments

Grantham incorrectly claims that "the first Frobenius pseudoprime with respect to the Fibonacci polynomial x^2 - x - 1 is 5777". However n = 5777 is the first Frobenius pseudoprime with respect to x^2 - x - 1 that has Jacobi symbol (5/n) = -1, i.e., n == 2,3 (mod 5). Unrestricted version with the first term 4181 is given in A212424.
Intersection of A212424 and A047221.
Composite k == 2,3 (mod 5) such that Fibonacci(k) == -1 (mod k) and that k divides Fibonacci(k+1). - Jianing Song, Sep 12 2018

References

  • R. Crandall, C. B. Pomerance. Prime Numbers: A Computational Perspective. Springer, 2nd ed., 2005.

Crossrefs

Programs

  • PARI
    { isFP23(n) = if(ispseudoprime(n),return(0)); t=Mod(x*Mod(1,n),(x^2-x-1)*Mod(1,n))^n; (kronecker(5,n)==-1 && t==1-x) }

A094413 Odd composites k that divide Fibonacci(k) + 1 but not Fibonacci(k+1).

Original entry on oeis.org

17261, 120581, 163059, 300847, 1842581, 3489641, 3792541, 5573499, 21159271, 36561959, 40779991, 63055651, 67306519, 69503037, 72125899, 129487163, 136021717, 174008141, 175094767, 247600477, 418623283, 529281911, 814454381, 902315699
Offset: 1

Views

Author

Eric Rowland, May 07 2004

Keywords

Crossrefs

Programs

  • PARI
    isok(n) = (n % 2) && ! ((fibonacci(n) + 1) % n) && (fibonacci(n+1) % n); \\ Michel Marcus, Aug 27 2013

Extensions

4 more terms from Ryan Propper, Aug 03 2005
a(9)-a(24) from Giovanni Resta, Jul 20 2013

A128289 Composite terms in A128288(n) = A023163(n)/3 for n>1.

Original entry on oeis.org

1853, 9701, 10877, 17261, 23323, 27403, 75077, 80189, 113573, 120581, 161027, 162133, 163059, 196877, 213749, 291941, 361397, 400987, 427549, 482677, 635627, 667589, 941291, 1030373, 1033997, 1140701, 1196061, 1256293, 1751747, 1816363, 1842581, 2288453, 2662277
Offset: 1

Views

Author

Alexander Adamchuk, Feb 24 2007

Keywords

Comments

3 divides A023163(n) for n>1. A023163(n) are the numbers n such that Fibonacci(n) == -2 (mod n).
Almost all terms of A128288 are prime that belong to A003631 = {2, 3, 7, 13, 17, 23, 37, 43, 47, 53, 67, 73, 83, 97} Primes congruent to {2, 3} mod 5; that are also the primes p that divide Fibonacci(p+1).
a(3) = 10877 = 73*149 belongs to A069107 Composite n such that n divides Fibonacci(n+1).
a(3) = 10877 and a(4) = 17261 belong to A094395 Odd composite n such that n divides Fibonacci(n) + 1.

Examples

			a(1) = A128288(74) = 1853 = 17*109.
a(2) = 9701 = 89*109.
a(3) = 10877 = 73*149.
a(4) = 17261 = 41*421.
a(5) = 23323 = 83*281.
		

Crossrefs

Cf. A128288, A002708, A023172, A023173, A023162, A023163 = numbers n such that Fib(n) == -2 (mod n). Cf. A003631, A069107, A094413, A094395 = Odd composite n such that n divides Fibonacci(n) + 1.

Programs

  • Mathematica
    Do[ f = Mod[ Fibonacci[3n], 3n ]; If[ !PrimeQ[n] && f == 3n-2, Print[ {n, FactorInteger[n]} ]], {n,1,25000} ]

Extensions

Two more terms from R. J. Mathar, Oct 08 2007
a(9)-a(33) from Amiram Eldar, Apr 07 2019
Showing 1-10 of 11 results. Next