cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A227905 Numbers of the form 4k+3 (A004767) that are Lucas pseudoprimes and Fermat pseudoprimes to base 2 (intersection of A005845 and A001567).

Original entry on oeis.org

741751, 1024651, 5481451, 31150351, 109437751, 139952671, 178482151, 284301751, 383425351, 395044651, 407282851, 417027451, 498706651, 582799951, 612816751, 620072251, 652969351, 738820351, 977755351, 1126587151, 1204176751, 1397357851, 1588247851, 1789167931
Offset: 1

Views

Author

Keywords

Comments

This sequence uses the Bruckman definition of "Lucas pseudoprime". There are 400,114 examples less than 2^64. - Dana Jacobsen, Jan 07 2015

Crossrefs

Cf. A004767 (4n+3).
Cf. A001567 (Fermat pseudoprimes to base 2), A005845 (Lucas pseudoprimes).

Programs

Extensions

More terms from Dana Jacobsen, Jan 07 2015
a(16)-a(24) from Amiram Eldar, Jun 27 2019

A329240 Numbers that are both Fermat pseudoprimes to base 2 (A001567) and Bruckman-Lucas pseudoprimes (A005845).

Original entry on oeis.org

2465, 219781, 228241, 252601, 399001, 512461, 722261, 741751, 852841, 1024651, 1193221, 1533601, 1690501, 1735841, 1857241, 1909001, 2100901, 2165801, 2531845, 2603381, 2704801, 2757241, 3568661, 3828001, 4504501, 5049001, 5148001, 5481451, 6189121, 6368689, 6840001
Offset: 1

Views

Author

Amiram Eldar, Nov 08 2019

Keywords

Comments

Van der Poel calculated the 215 terms below 6*10^8.
Van Zijl published the terms between 10^7 and 10^8.
These numbers were named "Van der Poel numbers" by Herman J. A. Duparc (1918-2002).

References

  • R. F. van Zijl, De getallen van Van der Poel (in Dutch), Master's thesis, Afstudeerverslag TU Delft, 1968.

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], CompositeQ[#] && PowerMod[2, # - 1, #] == 1 && Divisible[LucasL[#] - 1, #] &]

A001610 a(n) = a(n-1) + a(n-2) + 1, with a(0) = 0 and a(1) = 2.

Original entry on oeis.org

0, 2, 3, 6, 10, 17, 28, 46, 75, 122, 198, 321, 520, 842, 1363, 2206, 3570, 5777, 9348, 15126, 24475, 39602, 64078, 103681, 167760, 271442, 439203, 710646, 1149850, 1860497, 3010348, 4870846, 7881195, 12752042, 20633238, 33385281, 54018520
Offset: 0

Views

Author

Keywords

Comments

For prime p, p divides a(p-1). - T. D. Noe, Apr 11 2009 [This result follows immediately from the fact that A032190(n) = (1/n)*Sum_{d|n} a(d-1)*phi(n/d). - Petros Hadjicostas, Sep 11 2017]
Generalization. If a(0,x)=0, a(1,x)=2 and, for n>=2, a(n,x)=a(n-1,x)+x*a(n-2,x)+1, then we obtain a sequence of polynomials Q_n(x)=a(n,x) of degree floor((n-1)/2), such that p is prime iff all coefficients of Q_(p-1)(x) are multiple of p (sf. A174625). Thus a(n) is the sum of coefficients of Q_(n-1)(x). - Vladimir Shevelev, Apr 23 2010
Odd composite numbers n such that n divides a(n-1) are in A005845. - Zak Seidov, May 04 2010; comment edited by N. J. A. Sloane, Aug 10 2010
a(n) is the number of ways to modify a circular arrangement of n objects by swapping one or more adjacent pairs. E.g., for 1234, new arrangements are 2134, 2143, 1324, 4321, 1243, 4231 (taking 4 and 1 to be adjacent) and a(4) = 6. - Toby Gottfried, Aug 21 2011
For n>2, a(n) equals the number of Markov equivalence classes with skeleton the cycle on n+1 nodes. See Theorem 2.1 in the article by A. Radhakrishnan et al. below. - Liam Solus, Aug 23 2018
From Gus Wiseman, Feb 12 2019: (Start)
For n > 0, also the number of nonempty subsets of {1, ..., n + 1} containing no two cyclically successive elements (cyclically successive means 1 succeeds n + 1). For example, the a(5) = 17 stable subsets are:
{1}, {2}, {3}, {4}, {5}, {6},
{1,3}, {1,4}, {1,5}, {2,4}, {2,5}, {2,6}, {3,5}, {3,6}, {4,6},
{1,3,5}, {2,4,6}.
(End)
Also the rank of the n-Lucas cube graph. - Eric W. Weisstein, Aug 01 2023

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    List([0..40], n-> Lucas(1,-1,n+1)[2] -1); # G. C. Greubel, Jul 12 2019
  • Haskell
    a001610 n = a001610_list !! n
    a001610_list =
       0 : 2 : map (+ 1) (zipWith (+) a001610_list (tail a001610_list))
    -- Reinhard Zumkeller, Aug 21 2011
    
  • Magma
    I:=[0,2]; [n le 2 select I[n] else Self(n-1)+Self(n-2)+1: n in [1..40]]; // Vincenzo Librandi, Mar 20 2015
    
  • Magma
    [Lucas(n+1) -1: n in [0..40]]; // G. C. Greubel, Jul 12 2019
    
  • Mathematica
    t = {0, 2}; Do[AppendTo[t, t[[-1]] + t[[-2]] + 1], {n, 2, 40}]; t
    RecurrenceTable[{a[n] == a[n - 1] +a[n - 2] +1, a[0] == 0, a[1] == 2}, a, {n, 0, 40}] (* Robert G. Wilson v, Apr 13 2013 *)
    CoefficientList[Series[x (2 - x)/((1 - x - x^2) (1 - x)), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 20 2015 *)
    Table[Fibonacci[n] + Fibonacci[n + 2] - 1, {n, 0, 40}] (* Eric W. Weisstein, Feb 13 2018 *)
    LinearRecurrence[{2, 0, -1}, {2, 3, 6}, 20] (* Eric W. Weisstein, Feb 13 2018 *)
    Table[LucasL[n] - 1, {n, 20}] (* Eric W. Weisstein, Aug 01 2023 *)
    LucasL[Range[20]] - 1 (* Eric W. Weisstein, Aug 01 2023 *)
  • PARI
    a(n)=([0,1,0; 0,0,1; -1,0,2]^n*[0;2;3])[1,1] \\ Charles R Greathouse IV, Sep 08 2016
    
  • PARI
    vector(40, n, f=fibonacci; f(n+1)+f(n-1)-1) \\ G. C. Greubel, Jul 12 2019
    
  • Sage
    [lucas_number2(n+1,1,-1) -1 for n in (0..40)] # G. C. Greubel, Jul 12 2019
    

Formula

a(n) = A000204(n)-1 = A000032(n+1)-1 = A000071(n+1) + A000045(n).
G.f.: x*(2-x)/((1-x-x^2)*(1-x)) = (2*x-x^2)/(1-2*x+x^3). [Simon Plouffe in his 1992 dissertation]
a(n) = F(n) + F(n+2) - 1 where F(n) is the n-th Fibonacci number. - Zerinvary Lajos, Jan 31 2008
a(n) = A014217(n+1) - A000035(n+1). - Paul Curtz, Sep 21 2008
a(n) = Sum_{i=1..floor((n+1)/2)} ((n+1)/i)*C(n-i,i-1). In more general case of polynomials Q_n(x)=a(n,x) (see our comment) we have Q_n(x) = Sum_{i=1..floor((n+1)/2)}((n+1)/i)*C(n-i,i-1)*x^(i-1). - Vladimir Shevelev, Apr 23 2010
a(n) = Sum_{k=0..n-1} Lucas(k), where Lucas(n) = A000032(n). - Gary Detlefs, Dec 07 2010
a(0)=0, a(1)=2, a(2)=3; for n>=3, a(n) = 2*a(n-1) - a(n-3). - George F. Johnson, Jan 28 2013
For n > 1, a(n) = A048162(n+1) + 3. - Toby Gottfried, Apr 13 2013
For n > 0, a(n) = A169985(n + 1) - 1. - Gus Wiseman, Feb 12 2019

A094395 Odd composite n such that n divides Fibonacci(n) + 1.

Original entry on oeis.org

5777, 10877, 17261, 75077, 80189, 100127, 113573, 120581, 161027, 162133, 163059, 231703, 300847, 430127, 618449, 635627, 667589, 851927, 1033997, 1106327, 1256293, 1388903, 1697183, 1842581, 2263127, 2435423, 2512889, 2662277
Offset: 1

Views

Author

Eric Rowland, May 01 2004

Keywords

Comments

For each prime p, Fibonacci(p) = 5^((p-1)/2) mod p, so p divides Fibonacci(p) + 1 for each prime p=10k+-3. Hence it is interesting to seek also nonprimes with the same property, a motivation for this sequence. - Robert FERREOL, Jul 14 2015
Are all terms squarefree? A counterexample can't be divisible by the square of a prime < 1000. - Robert Israel, Jul 17 2015
Any term that is not squarefree must be divisible by the square of a Fibonacci-Wieferich prime (see the StackExchange link). There are believed to be infinitely many such primes, but none are known, and none are less than 2*10^14. - Robert Israel, Jul 22 2015

Crossrefs

Programs

  • Maple
    with(combinat):test:=n->(fibonacci(n)+1) mod n= 0:
    select(test and not isprime ,[seq(2*k+1,k=1..10000)]);
    # Robert FERREOL, Jul 14 2015
  • Mathematica
    Select[ Range[3, 300000, 2], !PrimeQ[ # ] && Mod[Fibonacci[ # ] + 1, # ] == 0 &]
  • PARI
    main(size)=my(v=vector(size),i,t=1); for(i=1,size, while(1, if(t%2==1&&omega(t)>1&&(fibonacci(t)+1)%t==0, v[i]=t; break, t++)); t++); v; \\ Anders Hellström, Jul 17 2015
    
  • PARI
    is(n)=((Mod([1,1;1,0],n))^n)[1,2]==-1 && n%2 && !isprime(n) \\ Charles R Greathouse IV, Jul 20 2015

Extensions

a(6)-a(14) from Robert G. Wilson v, May 01 2004
More terms from Ryan Propper, Aug 03 2005

A335669 Odd composite integers m such that A006497(m) == 3 (mod m).

Original entry on oeis.org

33, 65, 119, 273, 377, 385, 533, 561, 649, 1105, 1189, 1441, 2065, 2289, 2465, 2849, 4187, 4641, 6545, 6721, 11921, 12871, 13281, 14041, 15457, 16109, 18241, 19201, 22049, 23479, 24769, 25345, 28421, 30745, 31631, 34997, 38121, 38503, 41441, 45961, 46761, 48577
Offset: 1

Views

Author

Ovidiu Bagdasar, Jun 17 2020

Keywords

Comments

If p is a prime, then A006497(p) == 3 (mod p).
This sequence contains the odd composite integers for which the congruence holds.
The generalized Pell-Lucas sequence of integer parameters (a,b) defined by V(n+2)=a*V(n+1)-b*V(n) and V(0)=2, V(1)=a, satisfy the identity V(p)==a (mod p) whenever p is prime and b=-1,1.
For a=3, b=-1, V(n) recovers the sequence A006497(n) (bronze Fibonacci numbers).

Examples

			33 is the first odd composite integer for which we have A006497(33) = 132742316047301964 == 3 (mod 33).
		

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer (to appear, 2020).

Crossrefs

Cf. A006497, A005845 (a=1), A330276 (a=2), A335670 (a=4), A335671 (a=5).

Programs

  • Mathematica
    Select[Range[3, 50000, 2], CompositeQ[#] && Divisible[LucasL[#, 3] - 3, #] &] (* Amiram Eldar, Jun 18 2020 *)
  • PARI
    is(m) = m%2 && !isprime(m) && [2, 3]*([0, 1; 1, 3]^m)[, 1]%m==3; \\ Jinyuan Wang, Jun 17 2020

Extensions

More terms from Jinyuan Wang, Jun 17 2020

A141137 Even Fibonacci pseudoprimes: even composite numbers k such that either (1) k divides Fibonacci(k-1) if k mod 5 = 1 or -1 or (2) k divides Fibonacci(k+1) if k mod 5 = 2 or -2.

Original entry on oeis.org

8539786, 12813274, 17340938, 33940178, 64132426, 89733106, 95173786, 187473826, 203211098, 234735586, 353686906, 799171066, 919831058, 1188287794, 1955272906, 2166139898, 2309861746, 2864860298, 3871638242, 5313594466, 5867301826
Offset: 1

Views

Author

T. D. Noe, Jun 09 2008

Keywords

Comments

These even Fibonacci pseudoprimes (FPPs) were found by Kenny Richardson (kenyai(AT)yahoo.com). See A081264 for odd FPPs and references. Be aware that some authors use the term "Fibonacci pseudoprime" for pseudoprimes in Lucas sequences. For example, see A005845 for Lucas V(1,-1) pseudoprimes.
a(69) > 2.6 * 10^11. - Dana Jacobsen, May 25 2015

Crossrefs

Cf. A081264.

Programs

Extensions

a(19) from Giovanni Resta, Jul 20 2013
a(20)-a(21) from Dana Jacobsen, May 25 2015

A212424 Frobenius pseudoprimes with respect to Fibonacci polynomial x^2 - x - 1.

Original entry on oeis.org

4181, 5777, 6721, 10877, 13201, 15251, 34561, 51841, 64079, 64681, 67861, 68251, 75077, 90061, 96049, 97921, 100127, 113573, 118441, 146611, 161027, 162133, 163081, 186961, 197209, 219781, 231703, 252601, 254321, 257761, 268801, 272611
Offset: 1

Views

Author

Max Alekseyev, May 16 2012

Keywords

Comments

Grantham incorrectly claims that "the first Frobenius pseudoprime with respect to the Fibonacci polynomial x^2 - x - 1 is 5777". Crandall and Pomerance state that the first such Frobenius pseudoprime is actually 4181.
The Frobenius (1,-1) pseudoprimes are a subset of the odd Fibonacci pseudoprimes A081264. Among other ways, this can be seen by Theorem 3.6.6 of Crandall and Pomerance (2005) where the Frobenius criterion with respect to x^2 - Px + Q is an additional condition on an input which has passed the Lucas test for the same polynomial. - Dana Jacobsen, Aug 05 2015
Many other quadratics have a sparser set of pseudoprimes. For example, while there are 98702 pseudoprimes below 10^13 with respect to the Fibonacci polynomial, there are only 3897 for x^2 - 3x - 5. - Dana Jacobsen, Aug 05 2015
This is the intersection of A049062 and (A081264 union A141137), that is, composite k coprime to 5 such that Fibonacci(k) == (k/5) (mod k) and that k divides Fibonacci(k-(k/5)), where (k/5) is the Legendre or Jacobi symbol. - Jianing Song, Sep 12 2018

References

  • R. Crandall, C. B. Pomerance. Prime Numbers: A Computational Perspective. Springer, 2nd ed., 2005.

Crossrefs

Terms congruent to 2 or 3 mod 5 are given in A212423.

Programs

  • PARI
    { isFP(n) = if(ispseudoprime(n),return(0)); t=Mod(x*Mod(1,n),(x^2-x-1)*Mod(1,n))^n; (kronecker(5,n)==-1 && t==1-x)||(kronecker(5,n)==1 && t==x) }
    
  • Perl
    use ntheory ":all"; foroddcomposites { say if is_frobenius_pseudoprime($,1,-1) } 1e10; # _Dana Jacobsen, Aug 05 2015

A335670 Odd composite integers m such that A014448(m) == 4 (mod m).

Original entry on oeis.org

9, 85, 161, 341, 705, 897, 901, 1105, 1281, 1853, 2465, 2737, 3745, 4181, 4209, 4577, 5473, 5611, 5777, 6119, 6721, 9701, 9729, 10877, 11041, 12209, 12349, 13201, 13481, 14981, 15251, 16185, 16545, 16771, 19669, 20591, 20769, 20801, 21845, 23323, 24465, 25345
Offset: 1

Views

Author

Ovidiu Bagdasar, Jun 17 2020

Keywords

Comments

If p is a prime, then A014448(p)==4 (mod p).
This sequence contains the odd composite integers for which the congruence holds.
The generalized Pell-Lucas sequence of integer parameters (a,b) defined by V(n+2)=a*V(n+1)-b*V(n) and V(0)=2, V(1)=a, satisfy the identity V(p)==a (mod p) whenever p is prime and b=-1,1.
For a=4, b=-1, V(n) recovers A014448(n) (even Lucas numbers).

Examples

			9 is the first odd composite integer for which A014448(9)=439204==4 (mod 9).
		

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer (to appear, 2020).

Crossrefs

Cf. A006497, A005845 (a=1), A330276 (a=2), A335669 (a=3), A335671 (a=5).

Programs

  • Maple
    M:= <<4|1>,<1|0>>:
    f:= proc(n) uses LinearAlgebra:-Modular;
    local A;
    A:= Mod(n,M,integer[8]);
    A:= MatrixPower(n,A,n);
    2*A[1,1] - 4*A[1,2] mod n;
    end proc:
    select(t -> f(t) = 4 and not isprime(t), [seq(i,i=3..10^5,2)]); # Robert Israel, Jun 19 2020
  • Mathematica
    Select[Range[3, 25000, 2], CompositeQ[#] && Divisible[LucasL[3#] - 4, #] &] (* Amiram Eldar, Jun 18 2020 *)

Extensions

More terms from Jinyuan Wang, Jun 17 2020

A094401 Composite n such that n divides both Fibonacci(n-1) and Fibonacci(n) - 1.

Original entry on oeis.org

2737, 4181, 6721, 13201, 15251, 34561, 51841, 64079, 64681, 67861, 68251, 90061, 96049, 97921, 118441, 146611, 163081, 179697, 186961, 194833, 197209, 219781, 252601, 254321, 257761, 268801, 272611, 283361, 302101, 303101, 327313, 330929
Offset: 1

Views

Author

Eric Rowland, May 01 2004

Keywords

Comments

Composite n such that Q^(n-1) = I (mod n), where Q is the Fibonacci matrix {{1,1},{1,0}} and I is the identity matrix. The identity is also true for the primes congruent to 1 or 4 (mod 5), which is sequence A045468. The period of Q^k (mod n) is the same as the period of the Fibonacci numbers F(k) (mod n), A001175. Hence the terms in this sequence are the composite n such that A001175(n) divides n-1. [T. D. Noe, Jan 09 2009]

Crossrefs

Programs

  • Mathematica
    Select[Range[2, 50000], ! PrimeQ[ # ] && Mod[Fibonacci[ # - 1], # ] == 0 && Mod[Lucas[ # ] - 1, # ] == 0 &]

Extensions

More terms from Ryan Propper, Sep 24 2005

A217120 Lucas pseudoprimes.

Original entry on oeis.org

323, 377, 1159, 1829, 3827, 5459, 5777, 9071, 9179, 10877, 11419, 11663, 13919, 14839, 16109, 16211, 18407, 18971, 19043, 22499, 23407, 24569, 25199, 25877, 26069, 27323, 32759, 34943, 35207, 39059, 39203, 39689, 40309, 44099, 46979, 47879
Offset: 1

Views

Author

Robert Baillie, Mar 16 2013

Keywords

Comments

Lucas pseudoprimes with parameters (P, Q) defined by Selfridge's Method A.

Crossrefs

Cf. A005845 (Lucas pseudoprimes as defined by Bruckman).
Cf. A217255 (strong Lucas pseudoprimes as defined by Baillie and Wagstaff).
Cf. A217719 (extra strong Lucas pseudoprimes as defined by Baillie).

Programs

  • Mathematica
    (* see link *)
Showing 1-10 of 22 results. Next