cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A081264 Odd Fibonacci pseudoprimes: odd composite numbers k such that either (1) k divides Fibonacci(k-1) if k == +-1 (mod 5) or (2) k divides Fibonacci(k+1) if k == +-2 (mod 5).

Original entry on oeis.org

323, 377, 1891, 3827, 4181, 5777, 6601, 6721, 8149, 10877, 11663, 13201, 13981, 15251, 17119, 17711, 18407, 19043, 23407, 25877, 27323, 30889, 34561, 34943, 35207, 39203, 40501, 50183, 51841, 51983, 52701, 53663, 60377, 64079, 64681
Offset: 1

Views

Author

T. D. Noe, Mar 15 2003, Jun 09 2008

Keywords

Comments

Lehmer shows that there are an infinite number of Fibonacci pseudoprimes (FPPs). In particular, the number Fibonacci(2p) is an FPP for all primes p > 5. Anderson lists over 5000 FPPs, while Jacobsen lists over 170000. The sequences A069106 and A069107 give k such that k divides Fibonacci(k-1) and k divides Fibonacci(k+1), respectively. See A141137 for even FPPs.

References

  • R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, 2002, p. 131.
  • Paulo Ribenboim, The New Book of Prime Number Records, Springer, 1995, p. 127.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 104.
  • A. Witno, Theory of Numbers, BookSurge, North Charleston, SC; see p. 83.

Crossrefs

Programs

  • Maple
    filter:= proc(n) local M,r;
       uses LinearAlgebra:-Modular;
       if isprime(n) then return false fi;
       M:= Mod(n, [[1,1],[1,0]],float[8]);
       if n^2 mod 5 = 1 then r:= n-1 else r:= n+1 fi;
       M:= MatrixPower(n,M,r);
       M[1,2] = 0
    end proc:select(filter, [2*i+1 $ i=1..10^5]); # Robert Israel, Aug 05 2015
  • Mathematica
    lst={}; f0=0; f1=1; Do[f2=f1+f0; If[n>1&&!PrimeQ[n], If[MemberQ[{1, 4}, Mod[n, 5]], If[Mod[f0, n]==0, AppendTo[lst, n]]]; If[MemberQ[{2, 3}, Mod[n, 5]], If[Mod[f2, n]==0, AppendTo[lst, n]]]]; f0=f1; f1=f2, {n, 100000}]; lst
    ocnQ[n_]:=CompositeQ[n]&&Which[Mod[n,5]==1,Divisible[Fibonacci[ n-1], n],Mod[n,5] == 4,Divisible[ Fibonacci[n-1],n],Mod[n,5]==2,Divisible[ Fibonacci[n+1],n], Mod[n,5]==3,Divisible[Fibonacci[n+1],n],True,False]; Select[Range[1,65001,2],ocnQ] (* Harvey P. Dale, Aug 23 2017 *)
  • Perl
    use ntheory ":all"; foroddcomposites { $e = (0,-1,1,1,-1)[$%5]; say unless $e==0 || (lucas_sequence($, 1, -1, $+$e))[0] } 1e10; # _Dana Jacobsen, Aug 05 2015

A327653 Composite numbers k coprime to 13 such that k divides A006190(k-Kronecker(13,k)).

Original entry on oeis.org

10, 119, 649, 1189, 1763, 3599, 4187, 5559, 6681, 12095, 12403, 12685, 12871, 12970, 14041, 14279, 15051, 16109, 19043, 22847, 23479, 24769, 26795, 28421, 30743, 30889, 31631, 31647, 33919, 34997, 37949, 38503, 39203, 41441, 46079, 48577, 49141, 50523, 50545, 53301, 56279, 58081, 58589
Offset: 1

Views

Author

Jianing Song, Sep 20 2019

Keywords

Comments

Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n) = m*x(n-1) + x(n-2) for k >= 2. For primes p, we have (a) p divides x(p-((m^2+4)/p)); (b) x(p) == ((m^2+4)/p) (mod p), where (D/p) is the Kronecker symbol. This sequence gives composite numbers k such that gcd(k, m^2+4) = 1 and that a condition similar to (a) holds for k, where m = 3.
If k is not required to be coprime to m^2 + 4 (= 13), then there are 360 such k <= 10^5 and 1506 such k <= 10^6, while there are only 62 terms <= 10^5 and 197 terms <= 10^6 in this sequence.
Also composite numbers k coprime to 13 such that A322907(k) divides k - Kronecker(13,k).

Examples

			A006190(9) = 12970 which is divisible by 10, so 10 is a term.
		

Crossrefs

m m=1 m=2 m=3
k | x(k-Kronecker(m^2+4,k))* A081264 U A141137 A327651 this seq
k | x(k)-Kronecker(m^2+4,k) A049062 A099011 A327654
* k is composite and coprime to m^2 + 4.
Cf. A006190, A322907, A011583 ({Kronecker(13,n)}).

Programs

  • PARI
    seqmod(n, m)=((Mod([3, 1; 1, 0], m))^n)[1, 2]
    isA327653(n)=!isprime(n) && !seqmod(n-Kronecker(13,n), n) && gcd(n,13)==1 && n>1

A212424 Frobenius pseudoprimes with respect to Fibonacci polynomial x^2 - x - 1.

Original entry on oeis.org

4181, 5777, 6721, 10877, 13201, 15251, 34561, 51841, 64079, 64681, 67861, 68251, 75077, 90061, 96049, 97921, 100127, 113573, 118441, 146611, 161027, 162133, 163081, 186961, 197209, 219781, 231703, 252601, 254321, 257761, 268801, 272611
Offset: 1

Views

Author

Max Alekseyev, May 16 2012

Keywords

Comments

Grantham incorrectly claims that "the first Frobenius pseudoprime with respect to the Fibonacci polynomial x^2 - x - 1 is 5777". Crandall and Pomerance state that the first such Frobenius pseudoprime is actually 4181.
The Frobenius (1,-1) pseudoprimes are a subset of the odd Fibonacci pseudoprimes A081264. Among other ways, this can be seen by Theorem 3.6.6 of Crandall and Pomerance (2005) where the Frobenius criterion with respect to x^2 - Px + Q is an additional condition on an input which has passed the Lucas test for the same polynomial. - Dana Jacobsen, Aug 05 2015
Many other quadratics have a sparser set of pseudoprimes. For example, while there are 98702 pseudoprimes below 10^13 with respect to the Fibonacci polynomial, there are only 3897 for x^2 - 3x - 5. - Dana Jacobsen, Aug 05 2015
This is the intersection of A049062 and (A081264 union A141137), that is, composite k coprime to 5 such that Fibonacci(k) == (k/5) (mod k) and that k divides Fibonacci(k-(k/5)), where (k/5) is the Legendre or Jacobi symbol. - Jianing Song, Sep 12 2018

References

  • R. Crandall, C. B. Pomerance. Prime Numbers: A Computational Perspective. Springer, 2nd ed., 2005.

Crossrefs

Terms congruent to 2 or 3 mod 5 are given in A212423.

Programs

  • PARI
    { isFP(n) = if(ispseudoprime(n),return(0)); t=Mod(x*Mod(1,n),(x^2-x-1)*Mod(1,n))^n; (kronecker(5,n)==-1 && t==1-x)||(kronecker(5,n)==1 && t==x) }
    
  • Perl
    use ntheory ":all"; foroddcomposites { say if is_frobenius_pseudoprime($,1,-1) } 1e10; # _Dana Jacobsen, Aug 05 2015

A327651 Composite numbers k coprime to 8 such that k divides Pell(k - Kronecker(8,k)), Pell = A000129.

Original entry on oeis.org

35, 169, 385, 779, 899, 961, 1121, 1189, 2419, 2555, 2915, 3107, 3827, 6083, 6265, 6441, 6601, 6895, 6965, 7801, 8119, 8339, 9179, 9809, 9881, 10403, 10763, 10835, 10945, 13067, 14027, 14111, 15179, 15841, 18241, 18721, 19097, 20833, 20909, 22499, 23219, 24727, 26795, 27869, 27971
Offset: 1

Views

Author

Jianing Song, Sep 20 2019

Keywords

Comments

Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n) = m*x(n-1) + x(n-2) for k >= 2. For primes p, we have (a) p divides x(p-((m^2+4)/p)); (b) x(p) == ((m^2+4)/p) (mod p), where (D/p) is the Kronecker symbol. This sequence gives composite numbers k such that gcd(k, m^2+4) = 1 and that a condition similar to (a) holds for k, where m = 2.
If k is not required to be coprime to m^2 + 4 (= 8), then there are 1232 such k <= 10^5 and 4973 such k <= 10^6, while there are only 83 terms <= 10^5 and 245 terms <= 10^6 in this sequence.
Also composite numbers k coprime to 8 such that A214028(k) divides k - Kronecker(8,k).

Examples

			Pell(36) = 21300003689580 is divisible by 35, so 35 is a term.
		

Crossrefs

m m=1 m=2 m=3
k | x(k-Kronecker(m^2+4,k))* A081264 U A141137 this seq A327653
k | x(k)-Kronecker(m^2+4,k) A049062 A099011 A327654
* k is composite and coprime to m^2 + 4.
Cf. A000129, A214028, A091337 ({Kronecker(8,n)}).

Programs

  • PARI
    pellmod(n, m)=((Mod([2, 1; 1, 0], m))^n)[1, 2]
    isA327651(n)=!isprime(n) && !pellmod(n-kronecker(8,n), n) && gcd(n,8)==1 && n>1

A327652 Intersection of A099011 and A327651.

Original entry on oeis.org

169, 385, 961, 1121, 3827, 6265, 6441, 6601, 7801, 8119, 10945, 13067, 15841, 18241, 19097, 20833, 24727, 27971, 29953, 31417, 34561, 35459, 37345, 38081, 39059, 42127, 45961, 47321, 49105, 52633, 53041, 55969, 56953, 58241, 62481, 74305, 79361, 81361, 84587, 86033, 86241, 101311, 107801
Offset: 1

Views

Author

Jianing Song, Sep 20 2019

Keywords

Comments

Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n) = m*x(n-1) + x(n-2) for k >= 2. For primes p, we have (a) p divides x(p-((m^2+4)/p)); (b) x(p) == ((m^2+4)/p) (mod p), where (D/p) is the Kronecker symbol. This sequence gives composite numbers k such that gcd(k, m^2+4) = 1 and that conditions similar to (a) and (b) hold for k simultaneously, where m = 2.
If k is not required to be coprime to m^2 + 4 (= 8), then there are 1190 such k <= 10^5 and 4847 such k <= 10^6, while there are only 41 terms <= 10^5 and 119 terms <= 10^6 in this sequence.

Examples

			169 divides Pell(168) as well as Pell(169) - 1, so 169 is a term.
		

Crossrefs

m m=1 m=2 m=3
k | x(k-Kronecker(m^2+4,k))* A081264 U A141137 A327651 A327653
k | x(k)-Kronecker(m^2+4,k) A049062 A099011 A327654
both A212424 this seq A327655
* k is composite and coprime to m^2 + 4.
Cf. A000129, A091337 ({Kronecker(8,n)}).

Programs

  • PARI
    pellmod(n, m)=((Mod([2, 1; 1, 0], m))^n)[1, 2]
    isA327652(n)=!isprime(n) && pellmod(n, n)==kronecker(8,n) && !pellmod(n-kronecker(8,n), n) && gcd(n,8)==1 && n>1

A327654 Composite numbers k coprime to 13 such that k divides A006190(k) - Kronecker(13,k).

Original entry on oeis.org

4, 8, 9, 119, 399, 649, 1023, 1179, 1189, 1199, 1881, 2703, 3519, 4081, 4187, 5151, 7055, 7361, 10349, 12871, 13833, 14041, 15519, 16109, 18639, 22593, 23479, 24769, 26937, 28421, 29007, 31631, 34111, 34997, 38503, 41441, 44671, 48577, 50545, 51711, 53823, 56279, 57407, 58081, 59081
Offset: 1

Views

Author

Jianing Song, Sep 20 2019

Keywords

Comments

Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n) = m*x(n-1) + x(n-2) for k >= 2. For primes p, we have (a) p divides x(p-((m^2+4)/p)); (b) x(p) == ((m^2+4)/p) (mod p), where (D/p) is the Kronecker symbol. This sequence gives composite numbers k such that gcd(k, m^2+4) = 1 and that a condition similar to (b) holds for k, where m = 3.
If k is not required to be coprime to m^2 + 4 (= 13), then there are 352 such k <= 10^5, and 1457 such k <= 10^6, while there are only 54 terms <= 10^5 and 148 terms <= 10^6 in this sequence.

Examples

			A006190(8) = 3927 == Kronecker(13,8) (mod 8), so 8 is a term.
		

Crossrefs

m m=1 m=2 m=3
k | x(k-Kronecker(m^2+4,k))* A081264 U A141137 A327651 A327653
k | x(k)-Kronecker(m^2+4,k) A049062 A099011 this seq
* k is composite and coprime to m^2 + 4.
Cf. A006190, A011583 ({Kronecker(13,n)}).

Programs

  • PARI
    seqmod(n, m)=((Mod([3, 1; 1, 0], m))^n)[1, 2]
    isA327654(n)=!isprime(n) && seqmod(n, n)==kronecker(13,n) && gcd(n,13)==1 && n>1

A327655 Intersection of A327653 and A327654.

Original entry on oeis.org

119, 649, 1189, 4187, 12871, 14041, 16109, 23479, 24769, 28421, 31631, 34997, 38503, 41441, 48577, 50545, 56279, 58081, 59081, 61447, 75077, 91187, 95761, 96139, 116821, 127937, 146329, 148943, 150281, 157693, 170039, 180517, 188501, 207761, 208349, 244649, 281017, 311579, 316409
Offset: 1

Views

Author

Jianing Song, Sep 20 2019

Keywords

Comments

Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n) = m*x(n-1) + x(n-2) for k >= 2. For primes p, we have (a) p divides x(p-((m^2+4)/p)); (b) x(p) == ((m^2+4)/p) (mod p), where (D/p) is the Kronecker symbol. This sequence gives composite numbers k such that gcd(k, m^2+4) = 1 and that conditions similar to (a) and (b) hold for k simultaneously, where m = 2.
If k is not required to be coprime to m^2 + 4 (= 13), then there are 322 such k <= 10^5 and 1381 such k <= 10^6, while there are only 24 terms <= 10^5 and 72 terms <= 10^6 in this sequence.

Examples

			119 divides A006190(120) as well as A006190(119) + 1, so 119 is a term.
		

Crossrefs

m m=1 m=2 m=3
k | x(k-Kronecker(m^2+4,k))* A081264 U A141137 A327651 A327653
k | x(k)-Kronecker(m^2+4,k) A049062 A099011 A327654
both A212424 A327652 this seq
* k is composite and coprime to m^2 + 4.
Cf. A006190, A011583 ({Kronecker(13,n)}).

Programs

  • PARI
    seqmod(n, m)=((Mod([3, 1; 1, 0], m))^n)[1, 2]
    isA327655(n)=!isprime(n) && seqmod(n, n)==kronecker(13,n) && !seqmod(n-kronecker(13,n), n) && gcd(n,13)==1 && n>1
Showing 1-7 of 7 results.