cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A327655 Intersection of A327653 and A327654.

Original entry on oeis.org

119, 649, 1189, 4187, 12871, 14041, 16109, 23479, 24769, 28421, 31631, 34997, 38503, 41441, 48577, 50545, 56279, 58081, 59081, 61447, 75077, 91187, 95761, 96139, 116821, 127937, 146329, 148943, 150281, 157693, 170039, 180517, 188501, 207761, 208349, 244649, 281017, 311579, 316409
Offset: 1

Views

Author

Jianing Song, Sep 20 2019

Keywords

Comments

Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n) = m*x(n-1) + x(n-2) for k >= 2. For primes p, we have (a) p divides x(p-((m^2+4)/p)); (b) x(p) == ((m^2+4)/p) (mod p), where (D/p) is the Kronecker symbol. This sequence gives composite numbers k such that gcd(k, m^2+4) = 1 and that conditions similar to (a) and (b) hold for k simultaneously, where m = 2.
If k is not required to be coprime to m^2 + 4 (= 13), then there are 322 such k <= 10^5 and 1381 such k <= 10^6, while there are only 24 terms <= 10^5 and 72 terms <= 10^6 in this sequence.

Examples

			119 divides A006190(120) as well as A006190(119) + 1, so 119 is a term.
		

Crossrefs

m m=1 m=2 m=3
k | x(k-Kronecker(m^2+4,k))* A081264 U A141137 A327651 A327653
k | x(k)-Kronecker(m^2+4,k) A049062 A099011 A327654
both A212424 A327652 this seq
* k is composite and coprime to m^2 + 4.
Cf. A006190, A011583 ({Kronecker(13,n)}).

Programs

  • PARI
    seqmod(n, m)=((Mod([3, 1; 1, 0], m))^n)[1, 2]
    isA327655(n)=!isprime(n) && seqmod(n, n)==kronecker(13,n) && !seqmod(n-kronecker(13,n), n) && gcd(n,13)==1 && n>1

A340095 Odd composite integers m such that A052918(m-J(m,29)) == 0 (mod m) and gcd(m,29)=1, where J(m,29) is the Jacobi symbol.

Original entry on oeis.org

9, 15, 27, 45, 91, 121, 135, 143, 1547, 1573, 1935, 2015, 6543, 6721, 8099, 10403, 10877, 10905, 13319, 13741, 13747, 14399, 14705, 16109, 16471, 18901, 19043, 19109, 19601, 19951, 20591, 22753, 24639, 26599, 26937, 27593
Offset: 1

Views

Author

Ovidiu Bagdasar, Dec 28 2020

Keywords

Comments

The generalized Lucas sequences of integer parameters (a,b) defined by U(m+2)=a*U(m+1)-b*U(m) and U(0)=0, U(1)=1, satisfy the identity
U(p-J(p,D)) == 0 (mod p) when p is prime, b=-1 and D=a^2+4.
This sequence contains the odd composite integers with U(m-J(m,D)) == 0 (mod m).
For a=5 and b=-1, we have D=29 and U(m) recovers A052918(m).
If even numbers greater than 2 that are coprime to 29 are allowed, then 26, 442, 6994, ... would also be terms. - Jianing Song, Jan 09 2021

References

  • D. Andrica and O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.

Crossrefs

Cf. A052918, A071904, A081264 (a=1, b=-1), A327653 (a=3, b=-1), A340096 (a=7, b=-1), A340097 (a=3, b=1), A340098 (a=5, b=1), A340099 (a=7, b=1).

Programs

  • Mathematica
    Select[Range[3,28000, 2], CoprimeQ[#, 29] && CompositeQ[#] && Divisible[Fibonacci[#-JacobiSymbol[#, 29], 5], #] &]

Extensions

Coprime condition added to definition by Georg Fischer, Jul 20 2022

A340096 Odd composite integers m such that A054413(m-J(m,53)) == 0 (mod m), where J(m,53) is the Jacobi symbol.

Original entry on oeis.org

25, 35, 51, 65, 91, 175, 325, 391, 455, 575, 1247, 1295, 1633, 1763, 1775, 1921, 2275, 2407, 2599, 2651, 3367, 4199, 4579, 4623, 5629, 6441, 9959, 10465, 10825, 10877, 12025, 13021, 15155, 16021, 18881, 19019, 19039, 19307, 19669
Offset: 1

Views

Author

Ovidiu Bagdasar, Dec 28 2020

Keywords

Comments

The generalized Lucas sequences of integer parameters (a,b) defined by U(m+2)=a*U(m+1)-b*U(m) and U(0)=0, U(1)=1, satisfy the identity
U(p-J(p,D)) == 0 (mod p) when p is prime, b=-1 and D=a^2+4.
This sequence contains the odd composite integers with U(m-J(m,D)) == 0 (mod m).
For a=7 and b=-1, we have D=53 and U(m) recovers A054413(m).
If even numbers greater than 2 that are coprime to 53 are allowed, then 10, 50, 370, 5050, ... would also be terms. - Jianing Song, Jan 09 2021

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
  • D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021).
  • D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted).

Crossrefs

Cf. A054413, A071904, A081264 (a=1, b=-1), A327653 (a=3,b=-1), A340095 (a=5, b=-1)
Cf. A340097 (a=3, b=1), A340098 (a=5, b=1), A340099 (a=7, b=1).

Programs

  • Mathematica
    Select[Range[3,20000, 2], CoprimeQ[#, 53] && CompositeQ[#] && Divisible[Fibonacci[#-JacobiSymbol[#, 53], 7], #] &]

A340097 Odd composite integers m such that A001906(m-J(m,5)) == 0 (mod m) and gcd(m,5)=1, where J(m,5) is the Jacobi symbol.

Original entry on oeis.org

21, 323, 329, 377, 451, 861, 1081, 1819, 1891, 2033, 2211, 3653, 3827, 4089, 4181, 5671, 5777, 6601, 6721, 8149, 8557, 10877, 11309, 11663, 13201, 13861, 13981, 14701, 15251, 17119, 17513, 17711, 17941, 18407, 19043, 19951, 20473, 23407, 25369, 25651, 25877, 27323, 27511
Offset: 1

Views

Author

Ovidiu Bagdasar, Dec 28 2020

Keywords

Comments

The generalized Lucas sequences of integer parameters (a,b) defined by U(m+2)=a*U(m+1)-b*U(m) and U(0)=0, U(1)=1, satisfy the identity
U(p-J(p,D)) == 0 (mod p) when p is prime, b=1 and D=a^2-4.
This sequence contains the odd composite integers with U(m-J(m,D)) == 0 (mod m).
For a=3 and b=1, we have D=5 and U(m) recovers A001906(m).

References

  • D. Andrica and O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.

Crossrefs

Cf. A001906, A071904, A081264 (a=1, b=-1), A327653 (a=3,b=-1), A340095 (a=5, b=-1), A340096 (a=7, b=-1), A340098 (a=5, b=1), A340099 (a=7, b=1).

Programs

  • Mathematica
    Select[Range[3, 30000, 2], CoprimeQ[#, 5] && CompositeQ[#] && Divisible[ChebyshevU[# - JacobiSymbol[#, 5] - 1, 3/2], #] &]

Extensions

Coprime condition added to definition by Georg Fischer, Jul 20 2022

A340098 Odd composite integers m such that A004254(m-J(m,21)) == 0 (mod m) and gcd(m,21)=1, where J(m,21) is the Jacobi symbol.

Original entry on oeis.org

115, 253, 391, 527, 551, 713, 715, 779, 935, 1705, 1807, 1919, 2627, 2893, 2929, 3281, 4033, 4141, 5191, 5671, 5777, 5983, 6049, 6479, 7645, 7739, 8695, 9361, 11663, 11815, 12121, 12209, 12265, 14491, 17249, 17963, 18299, 18407, 20087, 20099, 21505, 22499, 24463
Offset: 1

Views

Author

Ovidiu Bagdasar, Dec 28 2020

Keywords

Comments

The generalized Lucas sequences of integer parameters (a,b) defined by U(m+2)=a*U(m+1)-b*U(m) and U(0)=0, U(1)=1, satisfy the identity
U(p-J(p,D)) == 0 (mod p) when p is prime, b=1 and D=a^2-4.
This sequence contains the odd composite integers with U(m-J(m,D)) == 0 (mod m).
For a=5 and b=1, we have D=21 and U(m) recovers A004254(m).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
  • D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021).
  • D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted).

Crossrefs

Cf. A004254, A071904, A081264 (a=1, b=-1), A327653 (a=3,b=-1), A340095 (a=5, b=-1), A340096 (a=7, b=-1), A340097 (a=3, b=1), A340099 (a=7, b=1).

Programs

  • Mathematica
    Select[Range[3, 25000, 2], CoprimeQ[#, 21] && CompositeQ[#] && Divisible[ChebyshevU[# - JacobiSymbol[#, 21] - 1, 5/2], #] &]

A340099 Odd composite integers m such that A004187(m-J(m,45)) == 0 (mod m) and gcd(m,45)=1, where J(m,45) is the Jacobi symbol.

Original entry on oeis.org

323, 329, 377, 451, 1081, 1771, 1819, 1891, 2033, 3653, 3827, 4181, 5671, 5777, 6601, 6721, 7471, 7931, 8149, 8557, 10877, 11309, 11663, 13201, 13861, 13981, 14701, 15251, 15449, 17119, 17513, 17687, 17711, 17941, 18407, 19043, 19951, 20447, 20473, 23407, 23771, 23851, 23999
Offset: 1

Views

Author

Ovidiu Bagdasar, Dec 28 2020

Keywords

Comments

The generalized Lucas sequences of integer parameters (a,b) defined by U(m+2)=a*U(m+1)-b*U(m) and U(0)=0, U(1)=1, satisfy the identity
U(p-J(p,D)) == 0 (mod p) when p is prime, b=1 and D=a^2-4.
This sequence contains the odd composite integers with U(m-J(m,D)) == 0 (mod m).
For a=7 and b=1, we have D=45 and U(m) recovers A004187(m).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
  • D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021).
  • D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted).

Crossrefs

Cf. A004187, A071904, A081264 (a=1, b=-1), A327653 (a=3,b=-1), A340095 (a=5, b=-1), A340096 (a=7, b=-1), A340097 (a=3, b=1), A340098 (a=5, b=1).

Programs

  • Mathematica
    Select[Range[3, 25000, 2], CoprimeQ[#, 45] && CompositeQ[#] && Divisible[ChebyshevU[# - JacobiSymbol[#, 45] - 1, 7/2], #] &]

A327651 Composite numbers k coprime to 8 such that k divides Pell(k - Kronecker(8,k)), Pell = A000129.

Original entry on oeis.org

35, 169, 385, 779, 899, 961, 1121, 1189, 2419, 2555, 2915, 3107, 3827, 6083, 6265, 6441, 6601, 6895, 6965, 7801, 8119, 8339, 9179, 9809, 9881, 10403, 10763, 10835, 10945, 13067, 14027, 14111, 15179, 15841, 18241, 18721, 19097, 20833, 20909, 22499, 23219, 24727, 26795, 27869, 27971
Offset: 1

Views

Author

Jianing Song, Sep 20 2019

Keywords

Comments

Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n) = m*x(n-1) + x(n-2) for k >= 2. For primes p, we have (a) p divides x(p-((m^2+4)/p)); (b) x(p) == ((m^2+4)/p) (mod p), where (D/p) is the Kronecker symbol. This sequence gives composite numbers k such that gcd(k, m^2+4) = 1 and that a condition similar to (a) holds for k, where m = 2.
If k is not required to be coprime to m^2 + 4 (= 8), then there are 1232 such k <= 10^5 and 4973 such k <= 10^6, while there are only 83 terms <= 10^5 and 245 terms <= 10^6 in this sequence.
Also composite numbers k coprime to 8 such that A214028(k) divides k - Kronecker(8,k).

Examples

			Pell(36) = 21300003689580 is divisible by 35, so 35 is a term.
		

Crossrefs

m m=1 m=2 m=3
k | x(k-Kronecker(m^2+4,k))* A081264 U A141137 this seq A327653
k | x(k)-Kronecker(m^2+4,k) A049062 A099011 A327654
* k is composite and coprime to m^2 + 4.
Cf. A000129, A214028, A091337 ({Kronecker(8,n)}).

Programs

  • PARI
    pellmod(n, m)=((Mod([2, 1; 1, 0], m))^n)[1, 2]
    isA327651(n)=!isprime(n) && !pellmod(n-kronecker(8,n), n) && gcd(n,8)==1 && n>1

A327652 Intersection of A099011 and A327651.

Original entry on oeis.org

169, 385, 961, 1121, 3827, 6265, 6441, 6601, 7801, 8119, 10945, 13067, 15841, 18241, 19097, 20833, 24727, 27971, 29953, 31417, 34561, 35459, 37345, 38081, 39059, 42127, 45961, 47321, 49105, 52633, 53041, 55969, 56953, 58241, 62481, 74305, 79361, 81361, 84587, 86033, 86241, 101311, 107801
Offset: 1

Views

Author

Jianing Song, Sep 20 2019

Keywords

Comments

Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n) = m*x(n-1) + x(n-2) for k >= 2. For primes p, we have (a) p divides x(p-((m^2+4)/p)); (b) x(p) == ((m^2+4)/p) (mod p), where (D/p) is the Kronecker symbol. This sequence gives composite numbers k such that gcd(k, m^2+4) = 1 and that conditions similar to (a) and (b) hold for k simultaneously, where m = 2.
If k is not required to be coprime to m^2 + 4 (= 8), then there are 1190 such k <= 10^5 and 4847 such k <= 10^6, while there are only 41 terms <= 10^5 and 119 terms <= 10^6 in this sequence.

Examples

			169 divides Pell(168) as well as Pell(169) - 1, so 169 is a term.
		

Crossrefs

m m=1 m=2 m=3
k | x(k-Kronecker(m^2+4,k))* A081264 U A141137 A327651 A327653
k | x(k)-Kronecker(m^2+4,k) A049062 A099011 A327654
both A212424 this seq A327655
* k is composite and coprime to m^2 + 4.
Cf. A000129, A091337 ({Kronecker(8,n)}).

Programs

  • PARI
    pellmod(n, m)=((Mod([2, 1; 1, 0], m))^n)[1, 2]
    isA327652(n)=!isprime(n) && pellmod(n, n)==kronecker(8,n) && !pellmod(n-kronecker(8,n), n) && gcd(n,8)==1 && n>1

A327654 Composite numbers k coprime to 13 such that k divides A006190(k) - Kronecker(13,k).

Original entry on oeis.org

4, 8, 9, 119, 399, 649, 1023, 1179, 1189, 1199, 1881, 2703, 3519, 4081, 4187, 5151, 7055, 7361, 10349, 12871, 13833, 14041, 15519, 16109, 18639, 22593, 23479, 24769, 26937, 28421, 29007, 31631, 34111, 34997, 38503, 41441, 44671, 48577, 50545, 51711, 53823, 56279, 57407, 58081, 59081
Offset: 1

Views

Author

Jianing Song, Sep 20 2019

Keywords

Comments

Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n) = m*x(n-1) + x(n-2) for k >= 2. For primes p, we have (a) p divides x(p-((m^2+4)/p)); (b) x(p) == ((m^2+4)/p) (mod p), where (D/p) is the Kronecker symbol. This sequence gives composite numbers k such that gcd(k, m^2+4) = 1 and that a condition similar to (b) holds for k, where m = 3.
If k is not required to be coprime to m^2 + 4 (= 13), then there are 352 such k <= 10^5, and 1457 such k <= 10^6, while there are only 54 terms <= 10^5 and 148 terms <= 10^6 in this sequence.

Examples

			A006190(8) = 3927 == Kronecker(13,8) (mod 8), so 8 is a term.
		

Crossrefs

m m=1 m=2 m=3
k | x(k-Kronecker(m^2+4,k))* A081264 U A141137 A327651 A327653
k | x(k)-Kronecker(m^2+4,k) A049062 A099011 this seq
* k is composite and coprime to m^2 + 4.
Cf. A006190, A011583 ({Kronecker(13,n)}).

Programs

  • PARI
    seqmod(n, m)=((Mod([3, 1; 1, 0], m))^n)[1, 2]
    isA327654(n)=!isprime(n) && seqmod(n, n)==kronecker(13,n) && gcd(n,13)==1 && n>1

A340118 Odd composite integers m such that A000045(2*m-J(m,5)) == 1 (mod m), where J(m,5) is the Jacobi symbol.

Original entry on oeis.org

323, 377, 609, 1891, 3081, 3827, 4181, 5777, 5887, 6601, 6721, 8149, 10877, 11663, 13201, 13601, 13981, 15251, 17119, 17711, 18407, 19043, 23407, 25877, 27323, 28441, 28623, 30889, 32509, 34561, 34943, 35207, 39203, 40501
Offset: 1

Views

Author

Ovidiu Bagdasar, Dec 28 2020

Keywords

Comments

The generalized Lucas sequences of integer parameters (a,b) defined by U(m+2)=a*U(m+1)-b*U(m) and U(0)=0, U(1)=1, satisfy U(2*p-J(p,D)) == 1 (mod p) whenever p is prime, k is a positive integer, b=-1 and D=a^2+4.
The composite integers m with the property U(k*m-J(m,D)) == U(k-1) (mod m) are called generalized Lucas pseudoprimes of level k- and parameter a. Here b=-1, a=1, D=5 and k=2, while U(m) is A000045(m) (Fibonacci sequence).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
  • D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021).
  • D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted).

Crossrefs

Cf. A000045, A071904, A081264 (a=1, b=-1, k=1), A327653 (a=3, b=-1, k=1).
Cf. A340119 (a=3, b=-1, k=2), A340120 (a=5, b=-1, k=2), A340121 (a=7, b=-1, k=2).

Programs

  • Mathematica
    Select[Range[3, 50000, 2], CoprimeQ[#, 5] && CompositeQ[#] && Divisible[Fibonacci[2*#-JacobiSymbol[#, 5], 1] - 1, #] &]
Showing 1-10 of 12 results. Next