A327653 Composite numbers k coprime to 13 such that k divides A006190(k-Kronecker(13,k)).
10, 119, 649, 1189, 1763, 3599, 4187, 5559, 6681, 12095, 12403, 12685, 12871, 12970, 14041, 14279, 15051, 16109, 19043, 22847, 23479, 24769, 26795, 28421, 30743, 30889, 31631, 31647, 33919, 34997, 37949, 38503, 39203, 41441, 46079, 48577, 49141, 50523, 50545, 53301, 56279, 58081, 58589
Offset: 1
Keywords
Examples
A006190(9) = 12970 which is divisible by 10, so 10 is a term.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
PARI
seqmod(n, m)=((Mod([3, 1; 1, 0], m))^n)[1, 2] isA327653(n)=!isprime(n) && !seqmod(n-Kronecker(13,n), n) && gcd(n,13)==1 && n>1
Comments