cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A081264 Odd Fibonacci pseudoprimes: odd composite numbers k such that either (1) k divides Fibonacci(k-1) if k == +-1 (mod 5) or (2) k divides Fibonacci(k+1) if k == +-2 (mod 5).

Original entry on oeis.org

323, 377, 1891, 3827, 4181, 5777, 6601, 6721, 8149, 10877, 11663, 13201, 13981, 15251, 17119, 17711, 18407, 19043, 23407, 25877, 27323, 30889, 34561, 34943, 35207, 39203, 40501, 50183, 51841, 51983, 52701, 53663, 60377, 64079, 64681
Offset: 1

Views

Author

T. D. Noe, Mar 15 2003, Jun 09 2008

Keywords

Comments

Lehmer shows that there are an infinite number of Fibonacci pseudoprimes (FPPs). In particular, the number Fibonacci(2p) is an FPP for all primes p > 5. Anderson lists over 5000 FPPs, while Jacobsen lists over 170000. The sequences A069106 and A069107 give k such that k divides Fibonacci(k-1) and k divides Fibonacci(k+1), respectively. See A141137 for even FPPs.

References

  • R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, 2002, p. 131.
  • Paulo Ribenboim, The New Book of Prime Number Records, Springer, 1995, p. 127.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 104.
  • A. Witno, Theory of Numbers, BookSurge, North Charleston, SC; see p. 83.

Crossrefs

Programs

  • Maple
    filter:= proc(n) local M,r;
       uses LinearAlgebra:-Modular;
       if isprime(n) then return false fi;
       M:= Mod(n, [[1,1],[1,0]],float[8]);
       if n^2 mod 5 = 1 then r:= n-1 else r:= n+1 fi;
       M:= MatrixPower(n,M,r);
       M[1,2] = 0
    end proc:select(filter, [2*i+1 $ i=1..10^5]); # Robert Israel, Aug 05 2015
  • Mathematica
    lst={}; f0=0; f1=1; Do[f2=f1+f0; If[n>1&&!PrimeQ[n], If[MemberQ[{1, 4}, Mod[n, 5]], If[Mod[f0, n]==0, AppendTo[lst, n]]]; If[MemberQ[{2, 3}, Mod[n, 5]], If[Mod[f2, n]==0, AppendTo[lst, n]]]]; f0=f1; f1=f2, {n, 100000}]; lst
    ocnQ[n_]:=CompositeQ[n]&&Which[Mod[n,5]==1,Divisible[Fibonacci[ n-1], n],Mod[n,5] == 4,Divisible[ Fibonacci[n-1],n],Mod[n,5]==2,Divisible[ Fibonacci[n+1],n], Mod[n,5]==3,Divisible[Fibonacci[n+1],n],True,False]; Select[Range[1,65001,2],ocnQ] (* Harvey P. Dale, Aug 23 2017 *)
  • Perl
    use ntheory ":all"; foroddcomposites { $e = (0,-1,1,1,-1)[$%5]; say unless $e==0 || (lucas_sequence($, 1, -1, $+$e))[0] } 1e10; # _Dana Jacobsen, Aug 05 2015

A123976 Numbers k such that Fibonacci(k-1) is divisible by k.

Original entry on oeis.org

1, 11, 19, 29, 31, 41, 59, 61, 71, 79, 89, 101, 109, 131, 139, 149, 151, 179, 181, 191, 199, 211, 229, 239, 241, 251, 269, 271, 281, 311, 331, 349, 359, 379, 389, 401, 409, 419, 421, 431, 439, 442, 449, 461, 479, 491, 499, 509, 521, 541, 569, 571, 599, 601
Offset: 1

Views

Author

Tanya Khovanova, Oct 30 2006

Keywords

Comments

a(n) is a union of {1}, A069106(n) and A045468(n). Composite a(n) are listed in A069106(n) = {442, 1891, 2737, 4181, 6601, 6721, 8149, ...}. Prime a(n) are listed in A045468(n) = {11, 19, 29, 31, 41, 59, 61, 71, 79, 89, 101, 109, 131, 139, 149, 151, 179, 181, 191, 199, ...} Primes congruent to {1, 4} mod 5. - Alexander Adamchuk, Nov 02 2006

Examples

			Fibonacci(10) = 55, is divisible by 11.
		

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a123976 n = a123976_list !! (n-1)
    a123976_list = map (+ 1) $ elemIndices 0 $ zipWith mod a000045_list [1..]
    -- Reinhard Zumkeller, Oct 13 2011
    
  • Mathematica
    Select[Range[1000], IntegerQ[Fibonacci[ # - 1]/# ] &]
  • PARI
    is(n)=((Mod([1,1;1,0],n))^n)[2,2]==0 \\ Charles R Greathouse IV, Feb 03 2014

A069104 Numbers m such that m divides Fibonacci(m+1).

Original entry on oeis.org

1, 2, 3, 7, 13, 17, 23, 37, 43, 47, 53, 67, 73, 83, 97, 103, 107, 113, 127, 137, 157, 163, 167, 173, 193, 197, 223, 227, 233, 257, 263, 277, 283, 293, 307, 313, 317, 323, 337, 347, 353, 367, 373, 377, 383, 397, 433, 443, 457, 463, 467, 487, 503, 523, 547, 557
Offset: 1

Views

Author

Benoit Cloitre, Apr 06 2002

Keywords

Comments

Equals A003631 union A069107.
Let u(1)=u(2)=1 and (m+2)*u(m+2) = (m+1)*u(m+1) + m*u(m); then sequence gives values of k such that u(k) is an integer.

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a069104 n = a069104_list !! (n-1)
    a069104_list =
       map (+ 1) $ elemIndices 0 $ zipWith mod (drop 2 a000045_list) [1..]
    -- Reinhard Zumkeller, Oct 13 2011
    
  • Mathematica
    Select[Range[6! ],IntegerQ[Fibonacci[ #+1]/# ]&] (* Vladimir Joseph Stephan Orlovsky, Apr 03 2009 *)
    Select[Range[600],Mod[Fibonacci[#+1],#]==0&] (* Harvey P. Dale, Feb 24 2025 *)
  • PARI
    is(n)=((Mod([1,1;1,0],n))^n)[1,1]==0 \\ Charles R Greathouse IV, Feb 03 2014

A094400 Odd n dividing Fibonacci(n)-1 but neither Fibonacci(n-1) nor Fibonacci(n+1).

Original entry on oeis.org

7743, 27071, 54839, 72831, 217257, 388367, 417601, 575599, 670879, 691447, 701569, 809999, 850541, 881011, 1274897, 1365407, 1383249, 1464449, 1504097, 1653751, 1922817, 2106017, 2276351, 2385811, 2474047, 2556553, 2628879, 2697899, 2804543, 3017729, 3352049
Offset: 1

Views

Author

Eric Rowland, May 01 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[50000], OddQ[ # ] && Mod[Fibonacci[ # ] - 1, # ] == 0 && ! Mod[Fibonacci[ # - 1], # ] == 0 && ! Mod[Fibonacci[ # + 1], # ] == 0 &]

Extensions

Offset corrected by and a(15)-a(31) from Giovanni Resta, Jul 20 2013

A094411 Composite numbers k that divide both Fibonacci(k+1) and Fibonacci(k) + 1.

Original entry on oeis.org

5777, 10877, 75077, 80189, 100127, 113573, 161027, 162133, 231703, 430127, 618449, 635627, 667589, 851927, 1033997, 1106327, 1256293, 1388903, 1697183, 2263127, 2435423, 2512889, 2662277, 3175883, 3399527, 3452147, 3774377
Offset: 1

Views

Author

Eric Rowland, May 01 2004

Keywords

Comments

Also composites k that divide both Fibonacci(k+1) and Lucas(k) - 1. - Gary Detlefs, Feb 28 2013

Crossrefs

Programs

  • Mathematica
    Select[Range[2, 50000], ! PrimeQ[ # ] && Mod[Fibonacci[ # + 1], # ] == 0 && Mod[Fibonacci[ # ] + 1, # ] == 0 &]

Extensions

More terms from Gareth McCaughan, Jun 11 2004
More terms from Ryan Propper, Aug 04 2005
Offset corrected by Giovanni Resta, Jul 20 2013

A094402 Numbers k that divide both Fibonacci(k+1) and Lucas(k) + 1.

Original entry on oeis.org

1, 2, 323, 6479, 11663, 18407, 19043, 23407, 34943, 35207, 39203, 44099, 47519, 51983, 53663, 65471, 78089, 79547, 82983, 86063, 94667, 104663, 109871, 121103, 139359, 142883, 157079, 168299, 195227, 196559, 200147, 233519
Offset: 1

Views

Author

Eric Rowland, May 01 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[10^5],Divisible[Fibonacci[#+1],#]&&Divisible[LucasL[#]+1,#]&] (* Giorgos Kalogeropoulos, Aug 20 2021 *)
  • PARI
    is(n)=(Mod([0,1;1,1],n)^(n+1)*[0;1])[1,1]==0 && (Mod([0,1;1,1],n)^n*[2;1])[1,1]==-1 \\ Charles R Greathouse IV, Nov 04 2016

Extensions

More terms from Emeric Deutsch, Apr 13 2005

A094412 Numbers k that divide Fibonacci(k+1) but do not divide Fibonacci(k) + 1.

Original entry on oeis.org

323, 377, 2834, 3827, 6479, 11663, 18407, 19043, 20999, 23407, 25877, 27323, 34943, 35207, 39203, 44099, 47519, 50183, 51983, 53663, 60377, 65471, 78089, 79547, 81719, 82983, 84279, 84419, 86063, 90287, 94667, 104663, 109871, 121103, 121393
Offset: 1

Views

Author

Eric Rowland, May 01 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[50000], ! Mod[Fibonacci[ # ] + 1, # ] == 0 && Mod[Fibonacci[ # + 1], # ] == 0 &]
    Select[Range[122000],Divisible[{Fibonacci[#+1],Fibonacci[#]+1},#]=={True,False}&] (* Harvey P. Dale, Apr 16 2019 *)
  • PARI
    fibmod(n,m)=(Mod([0,1;1,1],m)^n*[0;1])[1,1]
    is(n)=fibmod(n+1,n)==0 && fibmod(n,n)!=-1 \\ Charles R Greathouse IV, Nov 04 2016

A100993 Indices k of Fibonacci numbers F(k) (A000045) that are divisible by k-1.

Original entry on oeis.org

2, 3, 4, 8, 14, 18, 24, 38, 44, 48, 54, 68, 74, 84, 98, 104, 108, 114, 128, 138, 158, 164, 168, 174, 194, 198, 224, 228, 234, 258, 264, 278, 284, 294, 308, 314, 318, 324, 338, 348, 354, 368, 374, 378, 384, 398, 434, 444, 458, 464, 468, 488, 504, 524, 548, 558
Offset: 1

Views

Author

Ron Knott, Nov 25 2004

Keywords

Comments

When k-1 is prime, it is in A003631; when k-1 is composite (such as 323), it is in A069107. - T. D. Noe, Dec 13 2004

Examples

			14 is a term because F(14) = 377 = 13*29 is divisible by 13, one less than its index number 14.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2, 500], Mod[ Fibonacci[ # ], # - 1] == 0 &] (* Robert G. Wilson v, Nov 26 2004 *)

Formula

a(n) = A069104(n) + 1. - T. D. Noe, Dec 13 2004

A128288 a(n) = A023163(n)/3 for n > 1.

Original entry on oeis.org

3, 13, 37, 43, 53, 67, 83, 107, 157, 163, 173, 197, 227, 277, 283, 293, 307, 317, 347, 373, 397, 443, 467, 523, 547, 557, 563, 587, 613, 643, 653, 677, 683, 733, 757, 773, 787, 797, 827, 853, 877, 883, 907, 947, 997, 1013, 1093, 1117, 1123, 1163, 1187, 1213
Offset: 2

Views

Author

Alexander Adamchuk, Feb 24 2007

Keywords

Comments

3 divides A023163(n) for n > 1. A023163(n) are the numbers n such that Fibonacci(n) == -2 (mod n). Almost all terms of {a(n)} are prime that belong to A003631 = {2, 3, 7, 13, 17, 23, 37, 43, 47, 53, 67, 73, 83, 97} (primes congruent to {2, 3} mod 5) that are also the primes p that divide Fibonacci(p+1). The first composite term is a(74) = 1853 = 17*109. The second composite term is 9701 = 89*109. The third composite term is 10877 = 73*149 belong to A069107(n) Composite n such that n divides F(n+1) where F(k) are the Fibonacci numbers. Composite terms in {a(n)} are listed in A128289 = {1853, 9701, 10877, 17261, ...}.

Examples

			A023163 begins {1, 9, 39, 111, 129, 159, 201, 249, 321, 471, 489, 519, ...}.
Thus a(2) = A023163(2)/3 = 9/3 = 3, a(3) = A023163(3)/3 = 39/3 = 13.
		

Crossrefs

Cf. A002708, A023172, A023173, A023162, A023163 (numbers k such that Fibonacci(k) == -2 (mod k)).
Cf. A003631, A069107, A128289 (composite terms in A128288).

Formula

a(n) = A023163(n)/3 for n > 1.

A128289 Composite terms in A128288(n) = A023163(n)/3 for n>1.

Original entry on oeis.org

1853, 9701, 10877, 17261, 23323, 27403, 75077, 80189, 113573, 120581, 161027, 162133, 163059, 196877, 213749, 291941, 361397, 400987, 427549, 482677, 635627, 667589, 941291, 1030373, 1033997, 1140701, 1196061, 1256293, 1751747, 1816363, 1842581, 2288453, 2662277
Offset: 1

Views

Author

Alexander Adamchuk, Feb 24 2007

Keywords

Comments

3 divides A023163(n) for n>1. A023163(n) are the numbers n such that Fibonacci(n) == -2 (mod n).
Almost all terms of A128288 are prime that belong to A003631 = {2, 3, 7, 13, 17, 23, 37, 43, 47, 53, 67, 73, 83, 97} Primes congruent to {2, 3} mod 5; that are also the primes p that divide Fibonacci(p+1).
a(3) = 10877 = 73*149 belongs to A069107 Composite n such that n divides Fibonacci(n+1).
a(3) = 10877 and a(4) = 17261 belong to A094395 Odd composite n such that n divides Fibonacci(n) + 1.

Examples

			a(1) = A128288(74) = 1853 = 17*109.
a(2) = 9701 = 89*109.
a(3) = 10877 = 73*149.
a(4) = 17261 = 41*421.
a(5) = 23323 = 83*281.
		

Crossrefs

Cf. A128288, A002708, A023172, A023173, A023162, A023163 = numbers n such that Fib(n) == -2 (mod n). Cf. A003631, A069107, A094413, A094395 = Odd composite n such that n divides Fibonacci(n) + 1.

Programs

  • Mathematica
    Do[ f = Mod[ Fibonacci[3n], 3n ]; If[ !PrimeQ[n] && f == 3n-2, Print[ {n, FactorInteger[n]} ]], {n,1,25000} ]

Extensions

Two more terms from R. J. Mathar, Oct 08 2007
a(9)-a(33) from Amiram Eldar, Apr 07 2019
Showing 1-10 of 11 results. Next