cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A128289 Composite terms in A128288(n) = A023163(n)/3 for n>1.

Original entry on oeis.org

1853, 9701, 10877, 17261, 23323, 27403, 75077, 80189, 113573, 120581, 161027, 162133, 163059, 196877, 213749, 291941, 361397, 400987, 427549, 482677, 635627, 667589, 941291, 1030373, 1033997, 1140701, 1196061, 1256293, 1751747, 1816363, 1842581, 2288453, 2662277
Offset: 1

Views

Author

Alexander Adamchuk, Feb 24 2007

Keywords

Comments

3 divides A023163(n) for n>1. A023163(n) are the numbers n such that Fibonacci(n) == -2 (mod n).
Almost all terms of A128288 are prime that belong to A003631 = {2, 3, 7, 13, 17, 23, 37, 43, 47, 53, 67, 73, 83, 97} Primes congruent to {2, 3} mod 5; that are also the primes p that divide Fibonacci(p+1).
a(3) = 10877 = 73*149 belongs to A069107 Composite n such that n divides Fibonacci(n+1).
a(3) = 10877 and a(4) = 17261 belong to A094395 Odd composite n such that n divides Fibonacci(n) + 1.

Examples

			a(1) = A128288(74) = 1853 = 17*109.
a(2) = 9701 = 89*109.
a(3) = 10877 = 73*149.
a(4) = 17261 = 41*421.
a(5) = 23323 = 83*281.
		

Crossrefs

Cf. A128288, A002708, A023172, A023173, A023162, A023163 = numbers n such that Fib(n) == -2 (mod n). Cf. A003631, A069107, A094413, A094395 = Odd composite n such that n divides Fibonacci(n) + 1.

Programs

  • Mathematica
    Do[ f = Mod[ Fibonacci[3n], 3n ]; If[ !PrimeQ[n] && f == 3n-2, Print[ {n, FactorInteger[n]} ]], {n,1,25000} ]

Extensions

Two more terms from R. J. Mathar, Oct 08 2007
a(9)-a(33) from Amiram Eldar, Apr 07 2019

A351337 Composite terms in A270951.

Original entry on oeis.org

169, 385, 961, 1121, 3741, 3781, 4795, 4901, 6061, 6265, 6441, 6601, 6895, 6931, 7801, 8119, 9809, 9881, 10945, 13981, 14111, 15841, 18241, 18721, 19097, 20833, 23829, 24727, 29953, 30381, 30889, 31417, 34561, 37345, 38081, 40391, 42127, 45961, 47321, 49105
Offset: 1

Views

Author

Bill McEachen, Feb 08 2022

Keywords

Comments

The sequence appears to have no intersection with A128288.

Crossrefs

Intersection of A002808 and A270951.
Cf. A128288.

Programs

  • Mathematica
    q[n_] := CompositeQ[n] && Divisible[Fibonacci[n - 1, 2], n]; Select[Range[50000], q] (* Amiram Eldar, Feb 09 2022 *)
  • PARI
    a000129(n) = ([2, 1; 1, 0]^n)[2, 1];
    is(n) = (n>1) && !isprime(n) && (Mod(a000129(n-1), n) == 0); \\ Michel Marcus, Feb 09 2022; after A270951
Showing 1-2 of 2 results.