cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A212424 Frobenius pseudoprimes with respect to Fibonacci polynomial x^2 - x - 1.

Original entry on oeis.org

4181, 5777, 6721, 10877, 13201, 15251, 34561, 51841, 64079, 64681, 67861, 68251, 75077, 90061, 96049, 97921, 100127, 113573, 118441, 146611, 161027, 162133, 163081, 186961, 197209, 219781, 231703, 252601, 254321, 257761, 268801, 272611
Offset: 1

Views

Author

Max Alekseyev, May 16 2012

Keywords

Comments

Grantham incorrectly claims that "the first Frobenius pseudoprime with respect to the Fibonacci polynomial x^2 - x - 1 is 5777". Crandall and Pomerance state that the first such Frobenius pseudoprime is actually 4181.
The Frobenius (1,-1) pseudoprimes are a subset of the odd Fibonacci pseudoprimes A081264. Among other ways, this can be seen by Theorem 3.6.6 of Crandall and Pomerance (2005) where the Frobenius criterion with respect to x^2 - Px + Q is an additional condition on an input which has passed the Lucas test for the same polynomial. - Dana Jacobsen, Aug 05 2015
Many other quadratics have a sparser set of pseudoprimes. For example, while there are 98702 pseudoprimes below 10^13 with respect to the Fibonacci polynomial, there are only 3897 for x^2 - 3x - 5. - Dana Jacobsen, Aug 05 2015
This is the intersection of A049062 and (A081264 union A141137), that is, composite k coprime to 5 such that Fibonacci(k) == (k/5) (mod k) and that k divides Fibonacci(k-(k/5)), where (k/5) is the Legendre or Jacobi symbol. - Jianing Song, Sep 12 2018

References

  • R. Crandall, C. B. Pomerance. Prime Numbers: A Computational Perspective. Springer, 2nd ed., 2005.

Crossrefs

Terms congruent to 2 or 3 mod 5 are given in A212423.

Programs

  • PARI
    { isFP(n) = if(ispseudoprime(n),return(0)); t=Mod(x*Mod(1,n),(x^2-x-1)*Mod(1,n))^n; (kronecker(5,n)==-1 && t==1-x)||(kronecker(5,n)==1 && t==x) }
    
  • Perl
    use ntheory ":all"; foroddcomposites { say if is_frobenius_pseudoprime($,1,-1) } 1e10; # _Dana Jacobsen, Aug 05 2015

A094412 Numbers k that divide Fibonacci(k+1) but do not divide Fibonacci(k) + 1.

Original entry on oeis.org

323, 377, 2834, 3827, 6479, 11663, 18407, 19043, 20999, 23407, 25877, 27323, 34943, 35207, 39203, 44099, 47519, 50183, 51983, 53663, 60377, 65471, 78089, 79547, 81719, 82983, 84279, 84419, 86063, 90287, 94667, 104663, 109871, 121103, 121393
Offset: 1

Views

Author

Eric Rowland, May 01 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[50000], ! Mod[Fibonacci[ # ] + 1, # ] == 0 && Mod[Fibonacci[ # + 1], # ] == 0 &]
    Select[Range[122000],Divisible[{Fibonacci[#+1],Fibonacci[#]+1},#]=={True,False}&] (* Harvey P. Dale, Apr 16 2019 *)
  • PARI
    fibmod(n,m)=(Mod([0,1;1,1],m)^n*[0;1])[1,1]
    is(n)=fibmod(n+1,n)==0 && fibmod(n,n)!=-1 \\ Charles R Greathouse IV, Nov 04 2016

A212423 Frobenius pseudoprimes == 2,3 (mod 5) with respect to Fibonacci polynomial x^2 - x - 1.

Original entry on oeis.org

5777, 10877, 75077, 100127, 113573, 161027, 162133, 231703, 430127, 635627, 851927, 1033997, 1106327, 1256293, 1388903, 1697183, 2263127, 2435423, 2662277, 3175883, 3399527, 3452147, 3774377, 3900797, 4109363, 4226777, 4403027, 4828277, 4870847
Offset: 1

Views

Author

Max Alekseyev, May 16 2012

Keywords

Comments

Grantham incorrectly claims that "the first Frobenius pseudoprime with respect to the Fibonacci polynomial x^2 - x - 1 is 5777". However n = 5777 is the first Frobenius pseudoprime with respect to x^2 - x - 1 that has Jacobi symbol (5/n) = -1, i.e., n == 2,3 (mod 5). Unrestricted version with the first term 4181 is given in A212424.
Intersection of A212424 and A047221.
Composite k == 2,3 (mod 5) such that Fibonacci(k) == -1 (mod k) and that k divides Fibonacci(k+1). - Jianing Song, Sep 12 2018

References

  • R. Crandall, C. B. Pomerance. Prime Numbers: A Computational Perspective. Springer, 2nd ed., 2005.

Crossrefs

Programs

  • PARI
    { isFP23(n) = if(ispseudoprime(n),return(0)); t=Mod(x*Mod(1,n),(x^2-x-1)*Mod(1,n))^n; (kronecker(5,n)==-1 && t==1-x) }

A094413 Odd composites k that divide Fibonacci(k) + 1 but not Fibonacci(k+1).

Original entry on oeis.org

17261, 120581, 163059, 300847, 1842581, 3489641, 3792541, 5573499, 21159271, 36561959, 40779991, 63055651, 67306519, 69503037, 72125899, 129487163, 136021717, 174008141, 175094767, 247600477, 418623283, 529281911, 814454381, 902315699
Offset: 1

Views

Author

Eric Rowland, May 07 2004

Keywords

Crossrefs

Programs

  • PARI
    isok(n) = (n % 2) && ! ((fibonacci(n) + 1) % n) && (fibonacci(n+1) % n); \\ Michel Marcus, Aug 27 2013

Extensions

4 more terms from Ryan Propper, Aug 03 2005
a(9)-a(24) from Giovanni Resta, Jul 20 2013
Showing 1-4 of 4 results.