cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A005845 Bruckman-Lucas pseudoprimes: k | (L_k - 1), where k is composite and L_k = Lucas numbers A000032.

Original entry on oeis.org

705, 2465, 2737, 3745, 4181, 5777, 6721, 10877, 13201, 15251, 24465, 29281, 34561, 35785, 51841, 54705, 64079, 64681, 67861, 68251, 75077, 80189, 90061, 96049, 97921, 100065, 100127, 105281, 113573, 118441, 146611, 161027
Offset: 1

Views

Author

Keywords

Comments

This uses the definition of "Lucas pseudoprime" by Bruckman, not the one by Baillie and Wagstaff. - R. J. Mathar, Jul 15 2012
Unlike the earlier Baillie-Wagstaff Lucas pseudoprimes A217120, these have significant overlap with the Fermat primality test. For example, the number 82380774001 is both an A005845 Lucas pseudoprime and a Fermat pseudoprime to the first 407 prime bases. - Dana Jacobsen, Jan 10 2015
k in A002808 such that A213060(k) = 1. - Robert Israel, Jul 14 2015

References

  • Paulo Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 104.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 105.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Somer, Lawrence. "Generalization of a Theorem of Bruckman on Dickson Pseudoprimes." Fibonacci Quarterly 60:4 (2022), 357-361.

Crossrefs

Cf. A094394, A094395 (analogous numbers with the Fibonacci sequence). - Robert FERREOL, Jul 14 2015
Cf. A213060 (L(n) mod n).

Programs

  • Haskell
    a005845 n = a005845_list !! (n-1)
    a005845_list = filter (\x -> (a000032 x - 1) `mod` x == 0) a002808_list
    -- Reinhard Zumkeller, Nov 13 2014
    
  • Maple
    with(combinat):lucas:=n->fibonacci(n-1)+fibonacci(n+1):
    test:=n->lucas(n) mod n=1:select(test and not isprime,[seq(n,n=1..10000)]); # Robert FERREOL, Jul 14 2015
  • Mathematica
    Select[Range[2,170000],!PrimeQ[#]&&Divisible[LucasL[#]-1,#]&] (* Harvey P. Dale, Mar 08 2014 *)
  • PARI
    is(n)=my(M=Mod([1,1;1,0],n)^n);M[1,1]+M[2,2]==1 && !isprime(n) && n>1 \\ Charles R Greathouse IV, Dec 27 2013
    
  • Python
    from sympy import isprime
    from itertools import count, islice
    def agen(): # generator of terms
        L0, L1 = 2, 1
        for k in count(1):
            L0, L1 = L1, L0+L1
            if k > 1 and not isprime(k) and (L0-1)%k == 0:
                yield k
    print(list(islice(agen(), 32))) # Michael S. Branicky, Apr 07 2024

Extensions

More terms from David Broadhurst

A094395 Odd composite n such that n divides Fibonacci(n) + 1.

Original entry on oeis.org

5777, 10877, 17261, 75077, 80189, 100127, 113573, 120581, 161027, 162133, 163059, 231703, 300847, 430127, 618449, 635627, 667589, 851927, 1033997, 1106327, 1256293, 1388903, 1697183, 1842581, 2263127, 2435423, 2512889, 2662277
Offset: 1

Views

Author

Eric Rowland, May 01 2004

Keywords

Comments

For each prime p, Fibonacci(p) = 5^((p-1)/2) mod p, so p divides Fibonacci(p) + 1 for each prime p=10k+-3. Hence it is interesting to seek also nonprimes with the same property, a motivation for this sequence. - Robert FERREOL, Jul 14 2015
Are all terms squarefree? A counterexample can't be divisible by the square of a prime < 1000. - Robert Israel, Jul 17 2015
Any term that is not squarefree must be divisible by the square of a Fibonacci-Wieferich prime (see the StackExchange link). There are believed to be infinitely many such primes, but none are known, and none are less than 2*10^14. - Robert Israel, Jul 22 2015

Crossrefs

Programs

  • Maple
    with(combinat):test:=n->(fibonacci(n)+1) mod n= 0:
    select(test and not isprime ,[seq(2*k+1,k=1..10000)]);
    # Robert FERREOL, Jul 14 2015
  • Mathematica
    Select[ Range[3, 300000, 2], !PrimeQ[ # ] && Mod[Fibonacci[ # ] + 1, # ] == 0 &]
  • PARI
    main(size)=my(v=vector(size),i,t=1); for(i=1,size, while(1, if(t%2==1&&omega(t)>1&&(fibonacci(t)+1)%t==0, v[i]=t; break, t++)); t++); v; \\ Anders Hellström, Jul 17 2015
    
  • PARI
    is(n)=((Mod([1,1;1,0],n))^n)[1,2]==-1 && n%2 && !isprime(n) \\ Charles R Greathouse IV, Jul 20 2015

Extensions

a(6)-a(14) from Robert G. Wilson v, May 01 2004
More terms from Ryan Propper, Aug 03 2005

A094401 Composite n such that n divides both Fibonacci(n-1) and Fibonacci(n) - 1.

Original entry on oeis.org

2737, 4181, 6721, 13201, 15251, 34561, 51841, 64079, 64681, 67861, 68251, 90061, 96049, 97921, 118441, 146611, 163081, 179697, 186961, 194833, 197209, 219781, 252601, 254321, 257761, 268801, 272611, 283361, 302101, 303101, 327313, 330929
Offset: 1

Views

Author

Eric Rowland, May 01 2004

Keywords

Comments

Composite n such that Q^(n-1) = I (mod n), where Q is the Fibonacci matrix {{1,1},{1,0}} and I is the identity matrix. The identity is also true for the primes congruent to 1 or 4 (mod 5), which is sequence A045468. The period of Q^k (mod n) is the same as the period of the Fibonacci numbers F(k) (mod n), A001175. Hence the terms in this sequence are the composite n such that A001175(n) divides n-1. [T. D. Noe, Jan 09 2009]

Crossrefs

Programs

  • Mathematica
    Select[Range[2, 50000], ! PrimeQ[ # ] && Mod[Fibonacci[ # - 1], # ] == 0 && Mod[Lucas[ # ] - 1, # ] == 0 &]

Extensions

More terms from Ryan Propper, Sep 24 2005

A094400 Odd n dividing Fibonacci(n)-1 but neither Fibonacci(n-1) nor Fibonacci(n+1).

Original entry on oeis.org

7743, 27071, 54839, 72831, 217257, 388367, 417601, 575599, 670879, 691447, 701569, 809999, 850541, 881011, 1274897, 1365407, 1383249, 1464449, 1504097, 1653751, 1922817, 2106017, 2276351, 2385811, 2474047, 2556553, 2628879, 2697899, 2804543, 3017729, 3352049
Offset: 1

Views

Author

Eric Rowland, May 01 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[50000], OddQ[ # ] && Mod[Fibonacci[ # ] - 1, # ] == 0 && ! Mod[Fibonacci[ # - 1], # ] == 0 && ! Mod[Fibonacci[ # + 1], # ] == 0 &]

Extensions

Offset corrected by and a(15)-a(31) from Giovanni Resta, Jul 20 2013

A319042 Composite numbers k such that Pell(k) == 1 (mod k).

Original entry on oeis.org

35, 169, 385, 899, 961, 1121, 2001, 3107, 4879, 4901, 5719, 6215, 6265, 6441, 6479, 6601, 7055, 7801, 8119, 8339, 9799, 10403, 10763, 10945, 13079, 13601, 15841, 18241, 19097, 20833, 20951, 22499, 24727, 27839, 29183, 29953, 30731, 31417, 31535, 34561, 37345
Offset: 1

Views

Author

Jon E. Schoenfield, Sep 08 2018

Keywords

Comments

It appears that most of the terms of A319040 (Numbers k such that Pell(k) == 1 (mod k)) are primes; this sequence lists the composites.
For the composite numbers k such that Pell(k) == -1 (mod k), see A319043.

Examples

			k=35 is in the sequence: Pell(35) = 8822750406821 = 35*252078583052 + 1 == 1 (mod 35).
k=6 is not in the sequence: Pell(6) = 70 = 6*12 - 2 !== 1 (mod 6).
		

Crossrefs

Cf. A000129 (Pell numbers), A094394, A319040, A319041, A319043.

A094409 Odd numbers k that divide Fibonacci(k) - 1 but not Fibonacci(k-1).

Original entry on oeis.org

323, 6479, 7743, 11663, 18407, 19043, 23407, 27071, 34943, 35207, 39203, 44099, 47519, 51983, 53663, 54839, 65471, 72831, 78089, 79547, 82983, 86063, 94667, 104663, 109871, 121103, 139359, 142883, 157079, 168299, 195227, 196559
Offset: 1

Views

Author

Eric Rowland, May 01 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[50000], OddQ[ # ] && Mod[Fibonacci[ # ] - 1, # ] == 0 && ! Mod[Fibonacci[ # - 1], # ] == 0 &]

Extensions

Offset corrected by Giovanni Resta, Jul 20 2013

A094410 Numbers k that divide Fibonacci(k-1) but do not divide Fibonacci(k) - 1.

Original entry on oeis.org

442, 1891, 6601, 8149, 13981, 17119, 17711, 30889, 40501, 52701, 68101, 78409, 88601, 88831, 115231, 138601, 145351, 150121, 153781, 191351, 199801, 218791, 265881, 266071, 316561, 332949, 342271, 348517, 407353, 453151, 456301, 464101
Offset: 1

Views

Author

Eric Rowland, May 01 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[50000], ! Mod[Fibonacci[ # ] - 1, # ] == 0 && Mod[Fibonacci[ # - 1], # ] == 0 &]
  • PARI
    fibmod(n,m)=(Mod([0,1;1,1],m)^n*[0;1])[1,1]
    is(n)=fibmod(n-1,n)==0 && fibmod(n,n)!=1 \\ Charles R Greathouse IV, Nov 04 2016

Extensions

More terms from David Wasserman, May 08 2007

A319168 Frobenius pseudoprimes == 1,4 (mod 5) with respect to Fibonacci polynomial x^2 - x - 1.

Original entry on oeis.org

4181, 6721, 13201, 15251, 34561, 51841, 64079, 64681, 67861, 68251, 90061, 96049, 97921, 118441, 146611, 163081, 186961, 197209, 219781, 252601, 254321, 257761, 268801, 272611, 283361, 302101, 303101, 330929, 399001, 433621, 438751, 489601, 512461, 520801
Offset: 1

Views

Author

Jianing Song, Sep 12 2018

Keywords

Comments

Complement of A212423 with respect to A212424.
Intersection of A212424 and A047209.
Composite k == 1,4 (mod 5) such that Fibonacci(k) == 1 (mod k) and that k divides Fibonacci(k-1).

Examples

			4181 = 37*113 is composite, while Fibonacci(4180) == 0 (mod 4181), Fibonacci(4181) == 1 (mod 4181), so 4181 is a term.
		

Crossrefs

Programs

  • PARI
    for(n=2,500000,if(!isprime(n) && (n%5==1||n%5==4) && fibonacci(n-kronecker(5,n))%n==0 && (fibonacci(n)-kronecker(5,n))%n==0, print1(n, ", ")))

A345753 Euler-Fibonacci pseudoprimes: odd composites k such that F(k) == 5^((k-1)/2) == +-1 (mod k), where F(k) = A000045(k), the Fibonacci numbers.

Original entry on oeis.org

146611, 252601, 399001, 512461, 556421, 852841, 1024651, 1193221, 1314631, 1857241, 1909001, 2100901, 2165801, 2603381, 2704801, 3470921, 3828001, 3942271, 4504501, 5049001, 5148001, 5481451, 6189121, 6840001, 7267051, 7519441, 7879681, 8086231, 8341201, 8719921, 9439201, 9863461
Offset: 1

Views

Author

Amiram Eldar and Thomas Ordowski, Jun 26 2021

Keywords

Comments

If p is an odd prime except 5, then F(p) == 5^((p-1)/2) == +-1 (mod p).
All terms found satisfy the congruence F(k) == 5^((k-1)/2) == 1 (mod k). They are a proper subset of A094394.
Are there odd composites m such that F(m) == 5^((m-1)/2) == -1 (mod m)? They are a proper subset (maybe empty) of A094395 (they are not in the database, below 4*10^9).

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 10^6, 2], CompositeQ[#] && MemberQ[{1, # - 1}, PowerMod[5, (# - 1)/2, #]] && Divisible[5^((# - 1)/2) - Fibonacci[#], #] &]
Showing 1-9 of 9 results.