A260228 a(n) = max(gcd(n,F(n-1)),gcd(n,F(n+1))), where F(n) is the n-th Fibonacci number.
1, 2, 3, 2, 1, 1, 7, 2, 3, 2, 11, 1, 13, 2, 3, 2, 17, 1, 19, 2, 3, 2, 23, 1, 1, 2, 3, 2, 29, 1, 31, 2, 3, 2, 1, 1, 37, 2, 3, 2, 41, 1, 43, 2, 3, 2, 47, 1, 7, 2, 3, 2, 53, 1, 1, 2, 3, 2, 59, 1, 61, 2, 21, 2, 1, 1, 67, 2, 3, 2, 71, 1, 73, 2, 3, 2, 1, 13, 79, 2, 3, 2, 83, 1, 1, 2, 3, 2, 89, 1, 1, 2, 3, 2, 1, 1, 97, 2, 33, 2
Offset: 1
Keywords
Examples
a(2) = max(gcd(2,F(1)),gcd(2,F(3))) = max(1,2)=2. a(11) = max(gcd(11,F(10)),gcd(11,F(12))) = max(gcd(11,55),gcd(11,144)) = max(11,1) = 11. a(13) = max(gcd(13,144),gcd(13,377)) = 13. a(23) = max(gcd(23,17711),gcd(23,46368)) = 23.
References
- David M. Burton, Elementary Number Theory, Allyn and Bacon, p. 292, 1980.
Links
- Dmitry Kamenetsky, Table of n, a(n) for n = 1..10000
- D. E. Daykin and L. A. G. Dresel, Factorization of Fibonacci numbers, Fibonacci Quarterly 8:1 (1970), pp. 23-30.
- Ron Knott, Factorisation of the first 300 Fibonacci numbers
- Brian Lawrence, Fibonacci numbers modulo p, Stanford SUMO talk, 2014.
- Eric W. Weisstein‘s World of Mathematics, Prime Formulas
- Wikipedia, Formula for primes
Programs
-
Magma
[Max(Gcd(n,Fibonacci(n-1)),Gcd(n,Fibonacci(n+1))): n in [1..90]]; // Vincenzo Librandi, Jul 20 2015
-
Mathematica
Table[Max[GCD[n, Fibonacci[n - 1]], GCD[n, Fibonacci[n + 1]]], {n, 1, 80}] (* Vincenzo Librandi, Jul 20 2015 *)
-
PARI
first(m)=vector(m,n,max(gcd(n,fibonacci(n-1)),gcd(n,fibonacci(n+1)))) /* Anders Hellström, Jul 20 2015 */
Comments